Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Pharmacol ; 31(1): 15-26, 2020 02.
Article in English | MEDLINE | ID: mdl-31503067

ABSTRACT

Glycogen synthase kinase 3 (GSK-3) is a constitutively active serine-threonine kinase that regulates numerous signaling pathways and has been implicated in neurodegenerative and neuropsychiatric diseases. Alcohol exposure increases GSK-3ß (ser9) phosphorylation (pGSK-3ß); however, few studies have investigated whether GSK-3 regulates the positive reinforcing effects of alcohol, which drive repetitive drug use. To address this goal, male C57BL/6J mice were trained to lever press on a fixed-ratio 4 schedule of sweetened alcohol or sucrose-only reinforcement in operant conditioning chambers. The GSK-3 inhibitor CHIR 99021 (0-10 mg/kg, i.p.) was injected 45 minutes prior to self-administration sessions. After completion of the self-administration dose-effect curve, potential locomotor effects of the GSK-3 inhibitor were assessed. To determine molecular efficacy, CHIR 99021 (10 mg/kg, i.p.) was evaluated on pGSK-3ß, GSK-3ß, protein interacting with C kinase (PICK1), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA2 subunit protein expression in amygdala, nucleus accumbens (NAcb), and frontal cortex. Results showed that CHIR 99021 (10 mg/kg) dose-dependently increased alcohol reinforced responding with no effect on sucrose self-administration or locomotor activity. CHIR 99021 (10 mg/kg) significantly decreased pGSK-3ß expression in all brain regions tested, reduced PICK1 and increased GluA2 total expression only in the NAcb. We conclude that GSK-3 inhibition increased the reinforcing effects of alcohol in mice. This was associated with reduced pGSK-3ß and PICK1, and increased GluA2 expression. Given prior results showing that AMPA receptor activity regulates alcohol self-administration, we propose that signaling through the GSK-3/PICK1/GluA2 molecular pathway drives the positive reinforcing effects of the drug, which are required for abuse liability.


Subject(s)
Alcohol Drinking/metabolism , Conditioning, Operant/drug effects , Glycogen Synthase Kinase 3/metabolism , Amygdala/metabolism , Animals , Brain/metabolism , Ethanol/administration & dosage , Glycogen Synthase Kinase 3 beta/metabolism , Inhibition, Psychological , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/metabolism , Phosphorylation/drug effects , Reinforcement, Psychology , Reward , Self Administration , Signal Transduction/drug effects
2.
Psychopharmacology (Berl) ; 235(6): 1681-1696, 2018 06.
Article in English | MEDLINE | ID: mdl-29502276

ABSTRACT

RATIONALE: There is a clear need for discovery of effective medications to treat behavioral pathologies associated with alcohol addiction, such as chronic drinking. OBJECTIVE: The goal of this preclinical study was to assess effects of chronic alcohol drinking on the nucleus accumbens (NAcb) proteome to identify and validate novel targets for medications development. MATERIALS AND METHODS: Two-dimensional difference in-gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption ionization tandem time-of-flight (MALDI-TOF/TOF) was used to assess effects of chronic voluntary home-cage (24-h access) alcohol drinking on the NAcb proteome of C57BL/6J mice. To extend these findings to a model of alcohol self-administration and reinforcement, we investigated potential regulation of the positive reinforcing effects of alcohol by the target protein glutathione S-transferase Pi 1 (GSTP1) using a pharmacological inhibition strategy in mice trained to self-administer alcohol or sucrose. RESULTS: Expression of 52 unique proteins in the NAcb was changed by chronic alcohol drinking relative to water control (23 upregulated, 29 downregulated). Ingenuity Pathway Analysis showed that alcohol drinking altered an array of protein networks associated with neurological and psychological disorders, molecular and cellular functions, and physiological systems and development. DAVID functional annotation analysis identified 9 proteins (SNCA, GSTP1, PRDX3, PPP3R1, EIF5A, PHB, PEBP1/RKIP, GAPDH, AND SOD1) that were significantly overrepresented in a functional cluster that included the Gene Ontology categories "response to alcohol" and "aging." Immunoblots confirmed changes in Pebp1 (RKIP) and GSTP1 in NAcb with no change in amygdala or frontal cortex, suggesting anatomical specificity. Systemic inhibition of GSTP1 with Ezatiostat (0-30 mg/kg, i.p.) dose-dependently reduced the reinforcing effects of alcohol as measured by operant self-administration, in the absence of motor effects. Sucrose self-administration was also reduced but in a manner associated with nonspecific motor inhibition. CONCLUSIONS: Protein expression profiling identified an array of proteins and networks in the NAcb, including GSTP1, that are novel molecular targets of chronic alcohol drinking. Pharmacological inhibition of GSTP1 significantly reduced the positive reinforcing effects of alcohol, which regulate repetitive use and abuse liability. The observation that this protein was both upregulated after chronic drinking and that its inhibition could modulate the reinforcing properties of alcohol suggests that it is a key target for alcohol-related pathologies. Proteomic strategies combined with specific preclinical models has potential to identify and validate novel targets of alcohol that may be useful in the medical management of alcohol addiction.


Subject(s)
Alcohol Drinking/metabolism , Ethanol/administration & dosage , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Proteome/metabolism , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Animals , Male , Mice , Mice, Inbred C57BL , Proteome/genetics , Proteomics/methods , Reinforcement, Psychology , Self Administration/methods , Sucrose/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...