Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 14(18): 3460-3471, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37681686

ABSTRACT

Cholinergic signaling, i.e., neurotransmission mediated by acetylcholine, is involved in a host of physiological processes, including learning and memory. Cholinergic dysfunction is commonly associated with neurodegenerative diseases, including Alzheimer's disease. In the gut, acetylcholine acts as an excitatory neuromuscular signaler to mediate smooth muscle contraction, which facilitates peristaltic propulsion. Gastrointestinal dysfunction has also been associated with Alzheimer's disease. This research focuses on the preparation of an electrochemical enzyme-based biosensor to monitor cholinergic signaling in the gut and its application for measuring electrically stimulated acetylcholine release in the mouse colon ex vivo. The biosensors were prepared by platinizing Pt microelectrodes through potential cycling in a potassium hexachloroplatinate (IV) solution to roughen the electrode surface and improve adhesion of the multienzyme film. These electrodes were then modified with a permselective poly(m-phenylenediamine) polymer film, which blocks electroactive interferents from reaching the underlying substrate while remaining permeable to small molecules like H2O2. A multienzyme film containing choline oxidase and acetylcholinesterase was then drop-cast on these modified electrodes. The sensor responds to acetylcholine and choline through the enzymatic production of H2O2, which is electrochemically oxidized to produce an increase in current with increasing acetylcholine or choline concentration. Important figures of merit include a sensitivity of 190 ± 10 mA mol-1 L cm-2, a limit of detection of 0.8 µmol L-1, and a batch reproducibility of 6.1% relative standard deviation at room temperature. These sensors were used to detect electrically stimulated acetylcholine release from mouse myenteric ganglia in the presence and absence of tetrodotoxin and neostigmine, an acetylcholinesterase inhibitor.


Subject(s)
Acetylcholine , Alzheimer Disease , Animals , Mice , Acetylcholinesterase , Hydrogen Peroxide , Reproducibility of Results , Cholinesterase Inhibitors , Choline , Colon
2.
Anal Chem ; 95(2): 1027-1037, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36524968

ABSTRACT

This research reports on the preparation of a boron-doped diamond microelectrode modified with platinum nanoparticles and Nafion and its application for detecting nitric oxide (NO) in vitro in the mouse colon. Platinum nanoparticle deposition was performed potentiodynamically using a 2.0 mmol L-1 potassium hexachloroplatinate solution and cycling from -0.2 to 1.3 V vs Ag/AgCl at 0.01 V s-1 for 10 cycles. The Nafion overlayer was applied by immersion in a solution containing 2.5% (w/v) colloidal Nafion and drying overnight at 55 °C in a humid environment. The optimal microelectrode preparation conditions were chosen based on the electrode response for NO oxidation as well as rejection of nitrite (NO2-) oxidation, the main interferent in the electrochemical detection of NO in biological media. Detection figures of merit include a sensitivity of 16.7 ± 2.7 mA M-1 cm-2 (n = 3 electrodes), a detection limit of 0.5 µmol L-1 (S/N = 3), and an electrode response reproducibility of 2.5% (RSD). Electrical stimulation and continuous amperometry were used to measure NO release from myenteric ganglia in wild-type male and female mice in response to an increasing number of electrical stimuli to study nitrergic signaling in the colon. We also present preliminary data regarding the use of optogenetics to selectively stimulate nitrergic myenteric neurons using blue light stimulation with a goal of understanding how inhibitory neuromuscular signaling is involved in the myenteric plexus circuitry that controls intestinal motility.


Subject(s)
Metal Nanoparticles , Nitric Oxide , Female , Male , Animals , Mice , Microelectrodes , Boron , Platinum , Diamond , Reproducibility of Results , Electrodes
3.
Neurogastroenterol Motil ; 34(12): e14439, 2022 12.
Article in English | MEDLINE | ID: mdl-36458522

ABSTRACT

BACKGROUND: Alterations in gastrointestinal (GI) function and the gut-brain axis are associated with progression and pathology of Alzheimer's Disease (AD). Studies in AD animal models show that changes in the gut microbiome and inflammatory markers can contribute to AD development in the central nervous system (CNS). Amyloid-beta (Aß) accumulation is a major AD pathology causing synaptic dysfunction and neuronal death. Current knowledge of the pathophysiology of AD in enteric neurons is limited, and whether Aß accumulation directly disrupts enteric neuron function is unknown. METHODS: In 6-month-old 5xFAD (transgenic AD) and wildtype (WT) male and female mice, GI function was assessed by colonic transit in vivo; propulsive motility and GI smooth muscle contractions ex vivo; electrochemical detection of enteric nitric oxide release in vitro, and changes in myenteric neuromuscular transmission using smooth muscle intracellular recordings. Expression of Aß in the brain and colonic myenteric plexus in these mice was determined by immunohistochemistry staining and ELISA assay. KEY RESULTS: At 6 months, 5xFAD mice did not show significant changes in GI motility or synaptic neurotransmission in the small intestine or colon. 5xFAD mice, but not WT mice, showed abundant Aß accumulation in the brain. Aß accumulation was undetectable in the colonic myenteric plexus of 5xFAD mice. CONCLUSIONS: 5xFAD AD mice are not a robust model to study amyloidosis in the gut as these mice do not mimic myenteric neuronal dysfunction in AD patients with GI dysmotility. An AD animal model with enteric amyloidosis is required for further study.


Subject(s)
Amyloidosis , Female , Male , Animals , Mice , Synaptic Transmission , Neurons , Submucous Plexus , Myenteric Plexus , Disease Models, Animal
4.
Sens Actuators B Chem ; 370: 132427, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35911567

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of spike protein to the host cell surface-expressing angiotensin-converting enzyme 2 (ACE2) or by endocytosis mediated by extracellular matrix metalloproteinase inducer (CD147). We present extended statistical studies of the multisine dynamic electrochemical impedance spectroscopy (DEIS) revealing interactions between Spike RBD and cellular receptors ACE2 and CD147, and a reference anti-RBD antibody (IgG2B) based on a functionalised boron-doped diamond (BDD) electrode. The DEIS was supported by a multivariate data analysis of a SARS-CoV-2 Spike RBD assay and cross-correlated with the atomic-level information revealed by molecular dynamics simulations. This approach allowed us to study and detect subtle changes in the electrical properties responsible for the susceptibility of cellular receptors to SARS-CoV-2, revealing their interactions. Changes in electrical homogeneity in the function of the RBD concentration led to the conclusion that the ACE2 receptor delivers the most homogeneous surface, delivered by the high electrostatic potential of the relevant docking regions. For higher RBD concentrations, the differences in electrical homogeneity between electrodes with different receptors vanish. Collectively, this study reveals interdependent virus entry pathways involving separately ACE2, CD147, and spike protein, as assessed using a biosensing platform for the rapid screening of cellular interactions (i.e. testing various mutations of SARS-CoV-2 or screening of therapeutic drugs).

5.
Analyst ; 147(11): 2523-2532, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35543208

ABSTRACT

We report herein on the use of a boron-doped diamond microelectrode (DME) to record oxidation currents in vitro associated with the release of serotonin from enterochromaffin cells in the epithelium of the human intestinal mucosa. Continuous amperometric measurements were made as a function of distance (ln current vs. distance) from the tissue surface in human jejunum specimens. The results demonstrate the capabilities of the DME for the stable and reproducible detection of serotonin in the complex environment of the human tissue. Serotonin release was evoked by the shearing force of a continuously flowing Krebs buffer solution at 36 °C with the tissue pinned down in a flow bath. Reproducible currents with distance were recorded for serotonin oxidation. Increased oxidation currents were observed in the presence of the selective serotonin reuptake inhibitor, fluoxetine, indicating that a significant fraction of the amperometric current recorded is attributable to serotonin oxidation. The nominal reciprocal slope, |slope-1|, of the ln current vs. distance plots increased from 270 ± 25 µm-1 in Krebs buffer (N = 3) to 471 ± 65 µm-1 during fluoxetine addition (N = 3), reflective of a reduced rate of reuptake in the presence of the SERT antagonist. The paper reports on the characterization of the diamond microelectrodes and the in vitro electrochemical measurement data.


Subject(s)
Diamond , Serotonin , Fluoxetine/pharmacology , Humans , Intestinal Mucosa , Jejunum , Microelectrodes
6.
Biosens Bioelectron ; 182: 113193, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33799031

ABSTRACT

This goal of this minireview is to introduce the reader to the area of research concerned with exhaled breath analysis for the purpose of detecting abnormal levels of physiologically-relevant chemical markers reflective of respiratory diseases. Two main two groups of sensing methods are reviewed: mass spectrometry and (bio)sensors. The discussion focuses on biosensor applications for EB and EBC analyses, which are presented in detail. The review finishes with conclusions and future perspectives, including recommendations for future near-term and long-term development of EBC biomarker sensing.


Subject(s)
Biosensing Techniques , Body Fluids , Biomarkers , Breath Tests , Exhalation
7.
J Phys Chem B ; 125(3): 950-955, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33464907

ABSTRACT

We have reported previously on the existence of a surface charge-induced free charge density gradient (ρf) in room-temperature ionic liquids (RTILs) with a characteristic persistence length of ca. 50 µm [Ma, K. Langmuir 2016, 32, 9507-9512]. The free charge density gradient is related to the dielectric response of the RTIL. We report here on the existence of a surface charge-induced gradient in the RTIL refractive index and quantify the relationship between the index gradient and ρf. Because ρf is uniaxial, the induced refractive index gradient is manifested as an induced birefringence. The RTIL sample holder has a curved surface such that the RTIL can function as a lens, and ρf is controlled by the surface charge density (σs) of the (concave) RTIL support. Current passed through an indium-doped tin oxide (ITO) surface layer on the support surface controls σs. The far-field image of light passed through the RTIL lens as a function of σs is used to measure the charge-induced changes of n in the RTIL. We demonstrate a modulation of the refractive index on the order of 15%, proportional to σs. This report places the relationship between ρf and RTIL dielectric response on a quantitative footing and suggests the utility of RTILs for electro-optic applications.

8.
Langmuir ; 37(2): 605-615, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33411540

ABSTRACT

Room temperature ionic liquids (RTILs) have a wide range of current and potential applications, in areas ranging from supercapacitor energy storage to sequestration of toxic gas phase species and use as reusable solvents for selected organic reactions. All these applications stem from their unique physical and chemical properties, which remain understood to only a limited extent. Among the issues of greatest importance is the extent to which RTILs exist as dissociated ionic species and the length scales over which some types of organizations are seen to exist in them. In this Invited Feature Article, we review the current understanding of organization in this family of materials, where opportunities lie in terms of deepening our understanding, and what potential applications would benefit from gaining such knowledge.

9.
Langmuir ; 36(21): 5717-5729, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32348147

ABSTRACT

This paper reports on how the surface chemistry of boron-doped nanocrystalline diamond (BDD) thin-film electrodes (H vs O) affects the wettability and electrochemical properties in two room-temperature ionic liquids (RTILs): [BMIM][PF6] and [HMIM][PF6]. Comparative measurements were made in 0.5 mol L-1 H2SO4. The BDD electrodes were modified by microwave or radio-frequency (RF) plasma treatment in H2 (H-BDD), Ar (Ar-BDD), or O2 (O-BDD). These modifications produced low-, medium-, and high-oxygen surface coverages. Atomic O/C ratios, as determined by X-ray photoelectron spectroscopy (XPS), were 0.01 for H-BDD, 0.08 for Ar-BDD, and 0.17 for O-BDD. The static contact angle of ultrapure water on the modified electrodes decreased from 110° (H-BDD) to 41° (O-BDD) with increasing surface oxygen coverage, as expected as the surface becomes more hydrophilic. Interestingly, the opposite trend was seen for both RTILs as the contact angle increased from 20° (H-BDD) to 50° (O-BDD) with increasing surface oxygen coverage. The cyclic voltammetric background current and potential-dependent capacitance in both RTILs were largest for BDD electrodes with the lowest O/C ratio (H-BDD) and smallest contact angle. Slightly larger voltammetric background currents and capacitance were observed in [HMIM][PF6] than in [BMIM][PF6]. Capacitance values ranged from 8 to 16 µF cm-2 over the potential range for H-BDD and from 4 to 6 µF cm-2 for O-BDD. The opposite trend was observed in H2SO4 as the voltammetric background current and capacitance were largest for BDD electrodes with the highest O/C ratio (O-BDD) and smallest contact angle. In summary, reducing the surface oxygen on BDD electrodes increases the wettability to two RTILs and this increases the voltammetric background current and capacitance.

10.
Langmuir ; 36(12): 3038-3045, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32148037

ABSTRACT

We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 µm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.

11.
J Phys Chem B ; 123(37): 7785-7793, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31433947

ABSTRACT

2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an in situ structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semiempirical computational methods, demonstrating that the Fe(III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and +171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox-difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.


Subject(s)
Mixed Function Oxygenases/metabolism , Binding Sites , Iron Compounds/chemistry , Iron Compounds/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Mixed Function Oxygenases/chemistry , Molecular Conformation , Oxidation-Reduction
12.
Anal Chem ; 91(14): 8835-8844, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31198034

ABSTRACT

Polyacrylamide-coated, carbon nanotube (PA/CNT) electrodes were prepared by an inkjet printing process and used to measure pyocyanin and uric acid in a wound fluid simulant at 37 °C. These two molecules are potential indicators of infection, and therefore their detection could prove useful for monitoring wound healing. Pyocyanin is a marker for the common wound bacterium Pseudomonas aeruginosa. Our long-term goal is to use these inexpensive and disposable electrodes to measure biomarkers of wound healing directly. In this proof-of-concept work, studies were performed in a wound fluid simulant to evaluate the stability of the electrodes and their responsiveness for the two bioanalytes. The PA/CNT inkjet-printed electrodes and electrical contacts were stable with unchanging physical and electrochemical properties in the wound fluid simulant over a 7-8-day period at 37 °C. The detection figures of merit for pyocyanin in the simulant at 37 °C were as follows: linear over the physiologically relevant range = 0.10 to 100 µmol L-1 (R2 = 0.9992), limit of detection = 0.10 µmol L-1 (S/N = 3), sensitivity = 35.6 ± 0.8 mA-L mol-1 and response variability ≤4% RSD. The detection figures of merit for uric acid in the simulant at 37 °C were as follows: linear over the physiologically relevant range = 100 to 1000 µmol L-1 (R2 = 0.9997), sensitivity = 2.83 ± 0.01 mA-L mol-1, and response variability ≤4% RSD. The limit of detection was not determined. The PA/CNT electrodes were also used to quantify pyocyanin concentrations in cell-free culture media from different strains of P. aeruginosa. The detected concentrations ranged from 1.00 ± 0.02 to 118 ± 6 µM depending on the strain.


Subject(s)
Culture Media/analysis , Nanotubes, Carbon/chemistry , Pyocyanine/analysis , Uric Acid/analysis , Wounds and Injuries/pathology , Biosensing Techniques/instrumentation , Electrodes , Equipment Design , Pseudomonas aeruginosa/isolation & purification , Wounds and Injuries/microbiology
13.
Chem Soc Rev ; 48(1): 157-204, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30444227

ABSTRACT

Conductive diamond possesses unique features as compared to other solid electrodes, such as a wide electrochemical potential window, a low and stable background current, relatively rapid rates of electron-transfer for soluble redox systems without conventional pretreatment, long-term responses, stability, biocompatibility, and a rich surface chemistry. Conductive diamond microcrystalline and nanocrystalline films, structures and particles have been prepared using a variety of approaches. Given these highly desirable attributes, conductive diamond has found extensive use as an enabling electrode across a variety of fields encompassing chemical and biochemical sensing, environmental degradation, electrosynthesis, electrocatalysis, and energy storage and conversion. This review provides an overview of the fundamental properties and highlights recent progress and achievements in the growth of boron-doped (metal-like) and nitrogen and phosphorus-doped (semi-conducting) diamond and hydrogen-terminated undoped diamond electrodes. Applications in electroanalysis, environmental degradation, electrosynthesis electrocatalysis, and electrochemical energy storage are also discussed. Diamond electrochemical devices utilizing micro-scale, ultramicro-scale, and nano-scale electrodes as well as their counterpart arrays are viewed. The challenges and future research directions of conductive diamond are discussed and outlined. This review will be important and informative for chemists, biochemists, physicists, materials scientists, and engineers engaged in the use of these novel forms of carbon.

14.
Anal Chem ; 90(11): 6477-6485, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29756763

ABSTRACT

The electroanalytical performance of a new commercial boron-doped diamond disk and a traditional nanocrystalline thin-film electrode were compared for the anodic stripping voltammetric determination of Ag(I). The diamond disk electrode is more flexible than the planar film as the former is compatible with most electrochemical cell designs including those incorporating magnetic stirring. Additionally, mechanical polishing and surface cleaning are simpler to execute. Differential pulse anodic stripping voltammetry (DPASV) was used to detect Ag(I) in standard solutions after optimization of the deposition potential, deposition time and scan rate. The optimized conditions were used to determine the concentration of Ag(I) in a NASA simulated potable water sample and a NIST standard reference solution. The electrochemical results were validated by ICP-OES measurements of the same solutions. The detection figures of merit for the disk electrode were as good or superior to those for the thin-film electrode. Detection limits were ≤5 µg L-1 (S/N = 3) for a 120 s deposition period, and response variabilities were <5% RSD. The polished disk electrode presented a more limited linear dynamic range presumably because of the reduced surface area available for metal phase formation. The concentrations of Ag(I) in the two water samples, as determined by DPASV, were in good agreement with the concentrations determined by ICP-OES.

15.
Anal Chem ; 90(3): 1951-1958, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29298039

ABSTRACT

Boron-doped diamond (BDD) is a promising electrochemical tool that exhibits excellent chemical sensitivity and stability. These intrinsic advantages coupled with the material's vast microfabrication flexibility make BDD an attractive sensing device. In this study, two different 3-in-1 BDD electrode sensors were fabricated, characterized, and investigated for their capability to detect isatin, an anxiogenic indole that possesses anticonvulsant activity. Each device was comprised of a working, reference, and auxiliary electrode, all made of BDD. Two different working electrode geometries were studied, a 2 mm diameter macroelectrode (MAC) and a microelectrode array (MEA). The BDD quasi-reference electrode was studied by measuring its potential against a traditional Ag/AgCl reference electrode. While the potential shifted as a function of solution pH, a miniscule potential drift was observed when holding the solution pH constant. Specifically, the BDD quasi-reference electrode had a potential of -0.2 V (vs Ag/AgCl) in a pH 7 solution, and this remained stable for a 30-h time period. For the detection of isatin, solutions were analyzed using both sensors in pH 7.4 phosphate buffered saline (PBS). Using the MEA sensor, the limit of detection (LOD, (3σ)/m) for isatin was found to be 0.04 µM; an increase to 0.22 µM was observed with the MAC sensor. These results were compared to those obtained from UV-vis spectrophotometry, where a 0.57 µM LOD was observed. The feasibility for use in a complex sample matrix was also examined by completing measurements in urine simulant. The results presented herein indicate that both 3-in-1 BDD sensors are applicable at low limits of detection with potential application as an electrochemical detector for chromatographic methods.


Subject(s)
Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/instrumentation , Isatin/urine , Electrodes , Equipment Design , Humans , Isatin/analysis , Limit of Detection
16.
Analyst ; 141(21): 6031-6041, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27704079

ABSTRACT

We report on the analytical performance of a tetrahedral amorphous carbon (ta-C:N) thin-film electrode in flow injection analysis with amperometric detection. Two model redox analytes were used to evaluate the electrode response because of their positive detection potentials and propensity (i.e., reaction products) to adsorb and foul sp2 carbon electrodes: tyrosine and tryptophan. ta-C:N electrodes are attractive for electroanalytical applications because they possesses many of the excellent properties of boron-doped nanocrystalline diamond (BDD) and they can be deposited at or near room temperature. The results show that the ta-C:N electrode exhibits lower background current and noise than glassy carbon (GC). The electrode was stable microstructurally at the positive potentials used for detection, ∼1.1 V, of these two amino acids and it exhibited superior analytical detection figures of merit as compared to GC and as good or superior to BDD. The linear dynamic range for both analytes at ta-C:N was from 0.1 to 100 µmol L-1, the sensitivity was 8-12 mA L mol-1, the short-term response variability was 1-2%, and the minimum detectable concentration was 89.7 ± 0.9 nM (18.3 µg L-1 or 0.46 ng) for tryptophan and 120 ± 11 nM (21.7 µg L-1 or 0.54 ng) for tyrosine. The analytical detection figures of merit for these amino acids at GC and BDD are also presented for comparison as is characterization data for the chemical composition and microstructure of the ta-C:N film.

17.
Analyst ; 141(21): 6160, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27704097

ABSTRACT

Correction for 'Evaluation of a nitrogen-incorporated tetrahedral amorphous carbon thin film for the detection of tryptophan and tyrosine using flow injection analysis with amperometric detection' by Romana Jarosová, et al., Analyst, 2016, DOI: .

18.
Langmuir ; 32(37): 9507-12, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27563803

ABSTRACT

We report direct evidence for charge-induced long-range (ca. 100 µm) order in the room-temperature ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)), supported on a silica surface. We have measured the rotational diffusion dynamics of anionic, cationic, and neutral chromophores as a function of distance from a silica surface. The results reflect the excess charge density gradient induced in the IL by the (negative) charge present on the silica surface. Identical measurements in ethylene glycol reveal spatially invariant reorientation dynamics for all chromophores. Capping the silica support with Me2SiCl2 results in spatially invariant reorientation dynamics in the IL. We understand these data in the context of the IL exhibiting a spatially damped piezoelectric response mediated by IL fluidity and disorder.


Subject(s)
Ionic Liquids/chemistry , Temperature , Fluorescence Polarization , Silicon Dioxide/chemistry
19.
ACS Appl Mater Interfaces ; 8(42): 28325-28337, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27243949

ABSTRACT

The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

20.
Electrochim Acta ; 197: 129-138, 2016 Apr 10.
Article in English | MEDLINE | ID: mdl-27103750

ABSTRACT

The effects of film morphology and surface termination on the direct electron transfer of horse heart cytochrome c on boron-doped ultrananocrystalline (B-UNCD) and microcrystalline (B-MCD) diamond thin-film electrodes were investigated. Quasi-reversible, diffusion-controlled cyclic voltammetric responses were observed on oxygen-terminated (atomic O/C ~0.015), but not hydrogen-terminated (atomic O/C ~0.02) diamond thin films. The effect of the surface termination was the same for both the nanostructured B-UNCD film with sp2-bonded carbon atoms in the grain boundaries and the well faceted B-MCD film with micron-sized grains and largely devoid of sp2 carbon. Stable cyclic voltammetric i-E curves were recorded with cycling for both oxygen-terminated films indicating the absence of protein denaturation and electrode fouling. The peak currents increased linearly with the square root of the scan rate and the protein concentration; both indicative of a reaction rate limited by semi-infinite linear diffusion of the protein. Similar heterogeneous electron-transfer rate constants were observed for oxygen-terminated B-UNCD (3.48 (± 1.25) × 10-3 cm/s) and B-MCD films (2.38 (± 0.72) × 10-3 cm/s). The results clearly reveal that the oxygen-terminated surface is more active for electron-transfer with this soluble redox protein than is the hydrogen-terminated surface. The film morphology does not influence the diffusion-controlled response of the redox protein.

SELECTION OF CITATIONS
SEARCH DETAIL
...