Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 194: 169-181, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36417836

ABSTRACT

C4 plants have the inherent capacity to concentrate atmospheric CO2 in the vicinity of RuBisCo, thereby increasing carboxylation, and inhibiting photorespiration. Carbonic anhydrase (CA), the first enzyme of C4 photosynthesis, converts atmospheric CO2 to HCO3-, which is utilized by PEPC to produce C4 acids. Bioengineering of C4 traits into C3 crops is an attractive strategy to increase photosynthesis and water use efficiency. In the present study, we isolated the PEPC gene from the C4 plant Setaria italica and transferred it to C3 rice. Overexpression of SiPEPC resulted in a 2-6-fold increment in PEPC enzyme activity in transgenic lines with respect to non-transformed control. Photosynthetic efficiency was enhanced in transformed plants, which was associated with increased ФPSII, ETR, lower NPQ, and higher chlorophyll accumulation. Water use efficiency was increased by 16-22% in PEPC transgenic rice lines. Increased PEPC activity enhanced quantum yield and carboxylation efficiency of PEPC transgenic lines. Transgenic plants exhibited higher light saturation photosynthesis rate and lower CO2 compensation point, as compared to non-transformed control. An increase in net photosynthesis increased the yield by (23-28.9%) and biomass by (24.1-29%) in transgenic PEPC lines. Altogether, our findings indicate that overexpression of C4-specific SiPEPC enzyme is able to enhance photosynthesis and related parameters in transgenic rice.


Subject(s)
Oryza , Setaria Plant , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Oryza/metabolism , Setaria Plant/genetics , Setaria Plant/metabolism , Carbon Dioxide , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Water , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
2.
Plants (Basel) ; 11(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35567271

ABSTRACT

Drought stress severely affects plant growth and development, causing significant yield loss in rice. This study demonstrates the relevance of water use efficiency with deeper rooting along with other root traits and gas exchange parameters. Forty-nine rice genotypes were evaluated in the basket method to examine leaf-level water use efficiency (WUEi) variation and its relation to root traits. Significant variation in WUEi was observed (from 2.29 to 7.39 µmol CO2 mmol−1 H2O) under drought stress. Regression analysis revealed that high WUEi was associated with higher biomass accumulation, low transpiration rate, and deep rooting ratio. The ratio of deep rooting was also associated with low internal CO2 concentration. The association of deep rooting with lower root number and root dry weight suggests that an ideal drought-tolerant genotype with higher water use efficiency should have deeper rooting (>30% RDR) with moderate root number and root dry weight to be sustained under drought for a longer period. The study also revealed that, under drought stress conditions, landraces are more water-use efficient with superior root traits than improved genotypes.

3.
Plant Sci ; 314: 111103, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34895540

ABSTRACT

Photorespiration accounts for 20-50 % reduction in grain yield in C3 crops. The process is essential to remove 2-phosphoglycolate produced due to the oxygenation activity of the ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) enzyme. Attempts were made to improve photosynthesis through enriched CO2 concentration by installing numerous photorespiratory bypass modules in the chloroplast of several crops. In this study, we have introduced Escherichia coli glycolate catabolic pathway (ECGC) into rice chloroplast to bypass photorespiration partially (PB) or completely (FB). Five genes encoding glyoxylate carboligase (GCL), tartronic semialdehyde reductase (TSR), and three subunits of glycolate dehydrogenase (GDH) were introduced to get FB plants, whereas only the three subunits of GDH were introduced to get PB plants. Southern analysis confirmed stable integration of the transgenes and their expression was confirmed by RT-qPCR analysis in the T3 progenies. Both FB and PB transformed lines exhibited increased photosynthetic efficiency, biomass, and grain yield than wild type (WT) with empty vector control. The introduction of ECGC pathway favoured the carboxylase activity of RuBisCO while decreasing its oxygenase activity fostering the functioning of Calvin-Benson cycle and resulting in an increased carbon-assimilation that was manifested in their superior architecture and harvest index. These findings will support rice and related cereal crop breeding programs to increase yield under elevated temperature and arid conditions.


Subject(s)
Chloroplasts/metabolism , Glycolates/metabolism , Metabolic Networks and Pathways/genetics , Oryza/growth & development , Oryza/genetics , Photosynthesis/physiology , Biomass , Crop Production , Crops, Agricultural/genetics , Crops, Agricultural/physiology
4.
Physiol Plant ; 173(4): 1597-1615, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34431099

ABSTRACT

Plant's response to fresh- and saline-water flooding and the resulting partial submergence, seems different due to the added complexities of element toxicity of salinity. We identified a few rice genotypes which can tolerate combined stresses of partial submergence and salinity during saline water flooding. To gain mechanistic insights, we compared two rice genotypes: Varshadhan (freshwater-flooding tolerant) and Rashpanjor (both fresh- and saline-water flooding tolerant). We found greater ethylene production and increased "respiratory burst oxidase homolog" (RBOH)-mediated reactive oxygen species (ROS) production led to well-developed constitutive aerenchyma formation in Rashpanjor, which makes it preadapted to withstand fresh- and saline-water flooding. On the contrary, an induced aerenchyma formation-dependent tolerance mechanism of Varshadhan worked well for freshwater flooding but failed to provide tolerance to saline-water flooding. Additional salt stress was found to significantly inhibit the induced aerenchyma formation process due to the dampening of ROS signaling by the action of metallothionein in Varshadhan. Besides, inconspicuous changes in ionic regulation processes in these two genotypes under saline-water flooding suggest preadapted constitutive aerenchyma formation plays a more significant role than elemental toxicity per se in tolerating combined stresses encountered during saline water flooding in rice. Overall, our study indicated that well-developed constitutive aerenchyma provide an adaptive advantage during partial submergence due to saline water flooding in rice as the key process of induced aerenchyma formation is hampered in the presence of salinity stress coupled with partial submergence.


Subject(s)
Oryza , Floods , Oryza/genetics , Plant Roots , Reactive Oxygen Species , Saline Waters
5.
J Plant Physiol ; 264: 153482, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34330009

ABSTRACT

C4 plants are superior to C3 plants in terms of productivity and limited photorespiration. PPDK (pyruvate orthophosphate dikinase) and NADP-ME (NADP-dependent malic enzyme) are two important photosynthetic C4-specific enzymes present in the mesophyll cells of C4 plants. To evaluate the effect of C4 enzymes in rice, we developed transgenic rice lines by separately introducing Setaria italica PPDK [SiPPDK] and S. italica ME [SiME] gene constructs under the control of the green tissue-specific maize PPDK promoter. Rice plant lines for both constructs were screened using the polymerase chain reaction (PCR), Southern hybridization, and expression analysis. The best transgenic plant lines for each case were selected for physiological and biochemical characterization. The results from qRT-PCR and enzyme activity analysis revealed higher expression and activity of both PPDK and NADP-ME genes compared with the nontransformed and empty-vector-transformed plants. The average photosynthetic efficiency of transgenic plant lines carrying the PPDK and NADP-ME genes increased by 18% and 12%, respectively, and was positively correlated with the increased accumulation of photosynthetic pigment. The decrease in Fv/Fm, increased electron transport rate (ETR), and increased photochemical quenching (qP) compared with nontransformed control plants suggest that transgenic rice plants transferred more absorbed light energy to photochemical reactions than wild-type plants. SiME-transgenic plants displayed reduced leaf malate content and superior performance under water deficit conditions. Interestingly, the transgenic plants showed yield enhancement by exhibiting increased plant height, panicle length, panicle weight and thousand grain weight. Overall, the exogenous foxtail millet C4 gene PPDK enhanced photosynthesis and yield to a greater extent than NADP-ME.


Subject(s)
Genes, Plant/genetics , Malate Dehydrogenase/genetics , Oryza/genetics , Plant Proteins/genetics , Pyruvate, Orthophosphate Dikinase/genetics , Setaria Plant/genetics , Chlorophyll/metabolism , Cloning, Molecular , Malate Dehydrogenase/metabolism , Oryza/anatomy & histology , Oryza/enzymology , Oryza/metabolism , Photosynthesis , Plant Proteins/metabolism , Plants, Genetically Modified/anatomy & histology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pyruvate, Orthophosphate Dikinase/metabolism , Real-Time Polymerase Chain Reaction , Setaria Plant/enzymology , Setaria Plant/metabolism
6.
J Food Biochem ; 45(7): e13822, 2021 07.
Article in English | MEDLINE | ID: mdl-34121203

ABSTRACT

Phosphorus (P) flow in agricultural land depends on the P taken off from harvested product, its losses through runoff and fertilizer applied to balance the removed P. Phytic acid (PA), the major storage form of phosphorus (P) in cereal grains is a key anti-nutrient for human and non-ruminants leads to eutrophication of waterways. As the natural non-renewable P reserves are limited, enhancing P use efficiency is needed for field crops. SULTR-like phosphorus distribution transporter (SPDT) is a novel rice transporter transfer P to the grain. Any alteration in transporter gene reduce grain P with concomitant rise in the leaves. A low PA (3.0 g/kg) rice Khira was identified where a single nucleotide mutation in LOC_Os06g05160 gene encoding SPDT showed low P transportation to grain. An amino acid change was detected as Valine-330 to Alanine at the 3' end of fifth exon. Highest expression of SPDT was observed in node I of rice as compared to low PA genotype. The mutation in SPDT could significantly affect P and PA accumulation in the grains with increased mineral bioavailability. PRACTICAL APPLICATIONS: Excessive P application in crop leads to higher production cost as well as rapid depletion of limited rock phosphate. Alteration of P transporter function in the rice lower PA and total P accumulation in the grains with increased mineral bioavailability. The re-distributed P in the straw can be applied as manure to the rice field. Thus, less P will be removed from the field, result in the decreased requirement for P fertilizer.


Subject(s)
Oryza , Biological Availability , Edible Grain/chemistry , Humans , Minerals , Nucleotides , Oryza/genetics , Phosphorus , Phytic Acid/analysis
7.
J Exp Bot ; 72(13): 4981-4992, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33852008

ABSTRACT

Direct selection for yield under drought has resulted in the release of a number of drought-tolerant rice varieties across Asia. In this study, we characterized the physiological traits that have been affected by this strategy in breeding trials across sites in Bangladesh, India, and Nepal. Drought- breeding lines and drought-tolerant varieties showed consistently longer flag leaves and lower stomatal density than our drought-susceptible check variety, IR64. The influence of environmental parameters other than drought treatments on leaf traits was evidenced by close grouping of treatments within a site. Flag-leaf length and width appeared to be regulated by different environmental parameters. In separate trials in the Philippines, the same breeding lines studied in South Asia showed that canopy temperature under drought and harvest index across treatments were most correlated with grain yield. Both atmospheric and soil stress strengthened the relationships between leaf traits and yield. The stable expression of leaf traits among genotypes and the identification of the environmental conditions in which they contribute to yield, as well as the observation that some breeding lines showed longer time to flowering and higher canopy temperature than IR64, suggest that selection for additional physiological traits may result in further improvements of this breeding pool.


Subject(s)
Droughts , Oryza , Edible Grain , Oryza/genetics , Plant Breeding , Plant Leaves
8.
PLoS One ; 15(7): e0227785, 2020.
Article in English | MEDLINE | ID: mdl-32673318

ABSTRACT

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated situation for grain yield per se and component traits. Twenty NPT genotypes were found promising with an average grain yield varying from 5.45 to 8.8 t/ha. A total of 85 SSR markers were used in the study to identify QTLs associated with grain yield per se and related traits. Sixty-six (77.65%) markers were found to be polymorphic. The PIC values varied from 0.516 to 0.92 with an average of 0.704. A moderate level of genetic diversity (0.39) was detected among genotypes. Variation to the tune of 8% within genotypes, 68% among the genotypes within the population and 24% among the populations were observed (AMOVA). This information may help in identification of potential parents for development of transgressive segregants with very high yield. The association analysis using GLM and MLM models led to the identification of 30 and 10 SSR markers associated with 70 and 16 QTLs, respectively. Thirty novel QTLs linked with 16 SSRs were identified to be associated with eleven traits, namely tiller number (qTL-6.1, qTL-11.1, qTL-4.1), panicle length (qPL-1.1, qPL-5.1, qPL-7.1, qPL-8.1), flag leaf length (qFLL-8.1, qFLL-9.1), flag leaf width (qFLW-6.2, qFLW-5.1, qFLW-8.1, qFLW-7.1), total no. of grains (qTG-2.2, qTG-a7.1), thousand-grain weight (qTGW-a1.1, qTGW-a9.2, qTGW-5.1, qTGW-8.1), fertile grains (qFG-7.1), seed length-breadth ratio (qSlb-3.1), plant height (qPHT-6.1, qPHT-9.1), days to 50% flowering (qFD-1.1) and grain yield per se (qYLD-5.1, qYLD-6.1a, qYLD-11.1).Some of the SSRs were co-localized with more than two traits. The highest co-localization was identified with RM5709 linked to nine traits, followed by RM297 with five traits. Similarly, RM5575, RM204, RM168, RM112, RM26499 and RM22899 were also recorded to be co-localized with more than one trait and could be rated as important for marker-assisted backcross breeding programs, for pyramiding of these QTLs for important yield traits, to produce new-generation rice for prospective increment in yield potentiality and breaking yield ceiling.


Subject(s)
Oryza/genetics , Quantitative Trait Loci , Edible Grain/genetics , Genetic Variation , Genotype , Microsatellite Repeats/genetics , Oryza/physiology , Phenotype , Plant Leaves/genetics , Plant Leaves/physiology , Principal Component Analysis
9.
Front Plant Sci ; 11: 265, 2020.
Article in English | MEDLINE | ID: mdl-32269578

ABSTRACT

Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.

10.
J Sci Food Agric ; 100(4): 1598-1607, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31773736

ABSTRACT

BACKGROUND: Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch-digesting α-amylase (which requires calcium for activity) in the human gut. In principle, the greater the amount of PA, the lower is the rate of starch hydrolysis. It is reflected in the lower glycemic index (GI) value of food. People leading sedentary lifestyles and consuming rice as a staple food are likely to develop type 2 diabetes. Hence, this study was planned to understand how PA content of different rice varieties affects the GI. RESULTS: Rice Khira and Mugai which had very low PA (0.30 and 0.36 g kg-1 , respectively) had higher GI values and α-amylase activity, while Nua Dhusara and the pigmented rice Manipuri black rice (MBR) which had high PA (2.13 and 2.98 g kg-1 , respectively) showed low α-amylase activity and GI values. This relationship was statistically significant, though a weak relationship was found for the pigmented rice. Expression levels of MIPSI, IPKI and GBSSI markedly increased in the middle stage of grain development in all of the six genotypes having contrasting PA and GI. Maximum expression of MIPSI and IPKI was observed in Nua Dhusara and MBR (which had high PA) while that of GBSSI was observed in Khira and Mugai (with higher GI) at middle stage showing a negative correlation between PA and GI. CONCLUSIONS: The data indicate that high PA content in rice might have an adverse effect on starch digestibility resulting in slower starch digestion in the human gut and consequently low glycemic response. © 2019 Society of Chemical Industry.


Subject(s)
Gastric Mucosa/metabolism , Oryza/metabolism , Phytic Acid/metabolism , Starch/metabolism , Digestion , Glycemic Index , Humans , Models, Biological , Oryza/chemistry , Phytic Acid/analysis , Starch/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism
11.
Planta ; 250(5): 1637-1653, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31399792

ABSTRACT

MAIN CONCLUSION: The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.


Subject(s)
Cation Transport Proteins/metabolism , Ions/metabolism , Oryza/physiology , Potassium/metabolism , Sodium/metabolism , Cation Transport Proteins/genetics , Chlorophyll/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Genotype , Optical Imaging , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Reproduction , Salinity , Salt Tolerance
12.
Sci Rep ; 9(1): 5753, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962576

ABSTRACT

Low light intensity is a great limitation for grain yield and quality in rice. However, yield is not significantly reduced in low light tolerant rice varieties. The work therefore planned for comparative transcriptome profiling under low light stress to decipher the genes involved and molecular mechanism of low light tolerance in rice. At active tillering stage, 50% low light exposure for 1 day, 3 days and 5 days were given to Swarnaprabha (low light tolerant) and IR8 (low light sensitive) rice varieties. Illumina (HiSeq) platform was used for transcriptome sequencing. A total of 6,652 and 12,042 genes were differentially expressed due to low light intensity in Swarnaprabha and IR8, respectively as compared to control. CAB, LRP, SBPase, MT15, TF PCL1 and Photosystem I & II complex related gene expressions were mostly increased in Swarnaprabha upon longer duration of low light exposure which was not found in IR8 as compared to control. Their expressions were validated by qRT-PCR. Overall study suggested that the maintenance of grain yield in the tolerant variety under low light might be results of accelerated expression of the genes which enable the plant to keep the photosynthetic processes moving at the same pace even under low light.


Subject(s)
Oryza/genetics , Stress, Physiological , Transcriptome , Oryza/growth & development , Oryza/metabolism , Photosynthesis , Sunlight
13.
Microbiol Res ; 219: 56-65, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30642467

ABSTRACT

Use of plant-associated beneficial microbes, especially endophytes are getting popular day by day as they occupy a relatively privileged niche inside different plant tissues with lesser competition for food and shelter than rhizosphere. The effects of different physical factors like temperature, rainfall, and seasonal variation and UV radiation on plant growth promoting endophytic communities are less pronounced than those on the rhizospheric and phylloplane microbes. This present work has been compromised with further utilization of an indigenous rice (Oryza sativa L.) root endophytic Azotobacter sp. strain Avi2 (MCC 3432) (AzA) as a bio-formulation for sustainable rice production based on several physiological parameters (plant height, root length/weight, leaf area, yield, chlorophyll contain), in-vitro comparative plant growth promoting assays, greenhouse and field experiments (dry and wet season). Treatments with AzA exhibited higher yield as well as maximal chlorophyll fluorescence (Fm) of flag leaves in flowering and grain filling stages indicating higher photosynthetic rates. Scanning electron microscopic image of rice roots demonstrated accumulation of bacterial biofilm at the junction of primary and lateral root confirming the root-colonizing ability of the bacterium. The results of the study were quite encouraging as AzA exhibited better vegetative and reproductive growth of rice in pot and field experiment compared to formulated rhizospheric Azotobacter sp. (commercial product). Apart from that plants treated with AzA (supplemented 50% nitrogenous fertilizer of recommended dose) exhibited similar yield parameters when it was compared with the recommended dose of fertilizer (RDF; 120:60:60 mg N:P:K kg-1 soil/ without any bacterial). Therefore, it can be concluded that application of this plant growth promoting endophyte can reduce a substantial amount of N-fertilizer for field application.


Subject(s)
Azotobacter/metabolism , Oryza/growth & development , Oryza/microbiology , Plant Leaves/growth & development , Plant Roots/growth & development , Seedlings/growth & development , Chlorophyll/metabolism , Endophytes/physiology , Nitrogen Fixation/physiology , Plant Roots/microbiology , Rhizosphere
14.
Article in English | MEDLINE | ID: mdl-29126007

ABSTRACT

In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.


Subject(s)
Adaptation, Physiological , Oryza/physiology , Stress, Physiological , Sucrose/analysis , Sugars/analysis , Water/metabolism , Least-Squares Analysis , Multivariate Analysis , Phenotype , Plant Leaves/growth & development , Plant Leaves/physiology , Reproducibility of Results
15.
Field Crops Res ; 209: 168-178, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28775653

ABSTRACT

In shallow rainfed rice agro-ecosystems, drought stress can occur at any growth stage and can cause a significant yield reduction. During recent years, some rice varieties possessing tolerance of reproductive-stage drought stress have recently been developed. Tolerance of vegetative-stage drought stress is also required to improve rice productivity in drought-prone regions. In this study, we evaluated a set of rice breeding lines for their response to a range of different types of vegetative-stage drought stress in order to propose standardized phenotyping protocols for conducting vegetative-stage drought stress screening trials and also to identify genotypes combining tolerance of vegetative- and reproductive-stage drought stress. A soil water potential threshold of -20 kPa during the vegetative stage was identified as the target for effective selection under vegetative stage with grain yield reduction of about 50% compared to irrigated control trials. Genotypes identified as showing high yield under reproductive-stage drought stress were not necessarily the genotypes showing best performance under vegetative-stage drought stress. Genotypes IR72667-16-1-B-B-3, IR78908-126-B-2-B, and IR79970-B-47-1 showed tolerance of both vegetative-stage and reproductive-stage drought stress. For most, the genotypes that were best under vegetative stage drought or even vegetative stage + reproductive stage drought were different from the genotypes that were best under reproductive stage drought. Based on the cultivar superiority measure, IR69515-6-KKN-4-UBN-4-2-1-1-1 and IR78908-126-B-1-B were the stable genotypes (indicated by low Pi ) under both irrigated control and severe vegetative stress conditions, genotypes IR83614-203-B and IR78908-80-B-3-B were stable under irrigated control conditions and moderate stress, whereas IR72667-16-1-B-B-3 was stable under both moderate and severe vegetative-stage stress conditions.

16.
Plant Soil ; 417(1): 377-392, 2017.
Article in English | MEDLINE | ID: mdl-31258196

ABSTRACT

AIMS: Drought is the major constraint to rainfed rice productivity in South Asia, but few reports provide detailed characterization of the soil properties related to drought stress severity in the region. The aim of the study was to provide a compilation of drought breeding network sites and their respective levels of drought stress, and to relate soil parameters with yield reduction by drought. METHODS: This study characterized levels of drought stress and soil nutrient and physical properties at 18 geographically distributed research station sites involved in rice varietal screening in Bangladesh, India, and Nepal, as well as at farmers' fields located near the research stations. RESULTS: Based on soil resistance to penetration profiles, a hardpan was surprisingly absent at about half of the sites characterized. Significant relationships of depth of compaction and yield reduction by drought indicated the effects of soil puddling on susceptibility to cracking, rather than water retention by hardpans, on plant water availability in this region. The main difference between research stations and nearby farmers' fields was in terms of soil compaction. CONCLUSIONS: These results present an initiative for understanding the range of severities of reproductive-stage drought stress in drought-prone rainfed lowland rice-growing areas in South Asia.

17.
Rice (N Y) ; 5(1): 31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-27234249

ABSTRACT

BACKGROUND: Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas. Multi environment evaluation of breeding lines helps breeder to identify appropriate genotypes for areas prone to similar level of drought stress. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments. RESULTS: ARB 8 and IR55419-04 recorded the highest drought yield index (DYI) and are identified as the best drought-tolerant lines. The proposed DYI provides a more effective assessment as it is calculated after accounting for a significant genotype x stress-level interaction across environments. For rainfed areas with variable frequency of drought occurrence, Mean yield index (MYI) along with deviation in performance of genotypes from currently cultivated popular varieties in all situations helps to select genotypes with a superior performance across irrigated, moderate and severe reproductive-stage drought situations. IR74371-70-1-1 and DGI 75 are the two genotypes identified to have shown a superior performance over IR64 and MTU1010 under all situations. CONCLUSION: For highly drought-prone areas, a combination of DYI with deviation in performance of genotypes under irrigated situations can enable breeders to select genotypes with no reduction in yield under favorable environments compared with currently cultivated varieties. For rainfed areas with variable frequency of drought stress, use of MYI together with deviation in performance of genotypes under different situations as compared to presently cultivated varieties will help breeders to select genotypes with superior performance under all situations.

SELECTION OF CITATIONS
SEARCH DETAIL
...