Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 139(3): 034102, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23883005

ABSTRACT

The nuclear-electronic orbital (NEO) method treats electrons and select nuclei quantum mechanically on the same level to extend beyond the Born-Oppenheimer approximation. Electron-nucleus dynamical correlation has been found to be highly significant due to the attractive Coulomb interaction. The explicitly correlated Hartree-Fock (NEO-XCHF) approach includes explicit electron-nucleus correlation with Gaussian-type geminal functions during the variational optimization of the nuclear-electronic wavefunction. Although accurate for small model systems, the NEO-XCHF method is computationally impractical for larger chemical systems. In this paper, we develop the reduced explicitly correlated Hartree-Fock approach, denoted NEO-RXCHF, where only select electronic orbitals are explicitly correlated to the nuclear orbitals. By explicitly correlating only the relevant electronic orbitals to the nuclear orbitals, the NEO-RXCHF approach avoids problems that can arise when all electronic orbitals are explicitly correlated to the nuclear orbitals in the same manner. We examine three different NEO-RXCHF methods that differ in the treatment of the exchange between the geminal-coupled electronic orbitals and the other electronic orbitals: NEO-RXCHF-fe is fully antisymmetric with respect to exchange of all electronic coordinates and includes all electronic exchange terms; NEO-RXCHF-ne neglects the exchange between the geminal-coupled electronic orbitals and the other electronic orbitals; and NEO-RXCHF-ae includes approximate exchange terms between the geminal-coupled electronic orbitals and the other electronic orbitals. The latter two NEO-RXCHF methods offer substantial computational savings over the NEO-XCHF approach. The NEO-RXCHF approach is applicable to a wide range of chemical systems that exhibit non-Born-Oppenheimer effects between electrons and nuclei, as well as positron-containing molecular systems.

2.
J Chem Phys ; 139(3): 034103, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23883006

ABSTRACT

In the application of the nuclear-electronic orbital (NEO) method to positronic systems, all electrons and the positron are treated quantum mechanically on the same level. Explicit electron-positron correlation can be included using Gaussian-type geminal functions within the variational self-consistent-field procedure. In this paper, we apply the recently developed reduced explicitly correlated Hartree-Fock (RXCHF) approach to positronic molecular systems. In the application of RXCHF to positronic systems, only a single electronic orbital is explicitly correlated to the positronic orbital. We apply NEO-RXCHF to three systems: positron-lithium, lithium positride, and positron-lithium hydride. For all three of these systems, the RXCHF approach provides accurate two-photon annihilation rates, average contact densities, electronic and positronic single-particle densities, and electron-positron contact densities. Moreover, the RXCHF approach is significantly more accurate than the original XCHF approach, in which all electronic orbitals are explicitly correlated to the positronic orbital in the same manner, because the RXCHF wavefunction is optimized to produce a highly accurate description of the short-ranged electron-positron interaction that dictates the annihilation rates and other local properties. Furthermore, RXCHF methods that neglect or approximate the electronic exchange interactions between the geminal-coupled electronic orbital and the regular electronic orbitals lead to virtually identical annihilation rates and densities as the fully antisymmetric RXCHF method but offer substantial advantages in computational tractability. Thus, NEO-RXCHF is a promising, computationally practical approach for studying larger positron-containing systems.

3.
J Chem Phys ; 136(16): 164105, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22559468

ABSTRACT

The nuclear-electronic orbital explicitly correlated Hartree-Fock (NEO-XCHF) approach is extended and applied to the positronic systems PsH, LiPs, and e(+)LiH. In this implementation, all electrons and positrons are treated quantum mechanically, and all nuclei are treated classically. This approach utilizes molecular orbital techniques with Gaussian basis sets for the electrons and positrons and includes electron-positron correlation with explicitly correlated Gaussian-type geminal functions. An efficient strategy is developed to reduce the number of variational parameters in the NEO-XCHF calculations. The annihilation rates, electron and positron densities, and electron-positron contact densities are compared to available results from higher-level calculations. Our analysis illustrates that the NEO-XCHF method produces qualitative to semi-quantitative results for these properties at a relatively low computational cost by treating only the essential electron-positron correlation explicitly. The NEO-HF method, which does not include explicit correlation and therefore is extremely efficient, is found to provide qualitatively accurate electron-positron contact densities for the e(+)LiH system but not for the LiPs system. Thus, the utility of the NEO-HF method for determining where annihilation occurs is system dependent and not generally reliable. The NEO-XCHF method, however, provides a computationally practical and reliable approach for determining where annihilation will occur in positronic systems.

4.
J Chem Phys ; 135(5): 054106, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823689

ABSTRACT

The nuclear-electronic orbital (NEO) approach treats specified nuclei quantum mechanically on the same level as the electrons with molecular orbital techniques. The explicitly correlated Hartree-Fock (NEO-XCHF) approach was developed to incorporate electron-nucleus dynamical correlation directly into the variational optimization of the nuclear-electronic wavefunction. In the original version of this approach, the Hartree-Fock wavefunction is multiplied by (1+G), where G is a geminal operator expressed as a sum of Gaussian type geminal functions that depend on the electron-proton distance. Herein, a new wavefunction ansatz is proposed to avoid the computation of five- and six-particle integrals and to simplify the computation of the lower dimensional integrals involving the geminal functions. In the new ansatz, denoted NEO-XCHF2, the Hartree-Fock wavefunction is multiplied by √(1+G) rather than (1+G). Although the NEO-XCHF2 ansatz eliminates the integrals that are quadratic in the geminal functions, it introduces terms in the kinetic energy integrals with no known analytical solution. A truncated expansion scheme is devised to approximate these problematic terms. An alternative hybrid approach, in which the kinetic energy terms are calculated with the original NEO-XCHF ansatz and the potential energy terms are calculated with the NEO-XCHF2 ansatz, is also implemented. Applications to a series of model systems with up to four electrons provide validation for the NEO-XCHF2 approach and the treatments of the kinetic energy terms.

5.
J Phys Chem B ; 112(47): 14959-70, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18975887

ABSTRACT

Subpicosecond time-resolved fluorescence of trans-4-dimethylamino-4'-cyanostilbene (DCS) is used to measure solvation dynamics in the gas-expanded liquid (GXL) system CH(3)CN + CO(2) at 25 degrees C along the liquid-vapor coexistence curve. These measurements are supplemented by measurements of the steady-state solvatochromism of DCS and of its rotation and isomerization times. Molecular dynamics computer simulations and a semiempirical spectral model that reproduces the observed solvatochromism in this system are used to interpret the experimental results. Simulations indicate that at compositions of x(CO2) > 0.5, the cybotactic region surrounding DCS is enriched in CH(3)CN molecules, and the extent of this enrichment is greater in S(1) than that in S(0). Solvation dynamics are dominated by the CH(3)CN component. These dynamics are biphasic, consisting of a subpicosecond inertial component, followed by a slower picosecond component, related to the redistribution of CH(3)CN molecules between the cybotactic region and the bulk solvent.

6.
J Phys Chem A ; 112(6): 1346-51, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18215029

ABSTRACT

The nuclear-electronic orbital (NEO) method was modified and extended to positron systems for studying mixed positronic-electronic wavefunctions, replacing the mass of the proton with the mass of the positron. Within the modified NEO framework, the NEO-HF (Hartree-Fock) method provides the energy corresponding to the single-configuration mixed positronic-electronic wavefunction, minimized with respect to the molecular orbitals expressed as linear combinations of Gaussian basis functions. The electron-electron and electron-positron correlation can be treated in the NEO framework with second-order perturbation theory (NEO-MP2) or multiconfigurational methods such as the full configuration interaction (NEO-FCI) and complete active space self-consistent-field (NEO-CASSCF) methods. In addition to implementing these methods for positronic systems, strategies for calculating electron-positron annihilation rates using NEO-HF, NEO-MP2, and NEO-FCI wavefunctions were also developed. To apply the NEO method to the positronium hydride (PsH) system, positronic and electronic basis sets were optimized at the NEO-FCI level and used to compute NEO-MP2 and NEO-FCI energies and annihilation rates. The effects of basis set size on NEO-MP2 and NEO-FCI correlation energies and annihilation rates were compared. Even-tempered electronic and positronic basis sets were also optimized for the e+LiH molecule at the NEO-MP2 level and used to compute the equilibrium bond length and vibrational energy.

7.
J Phys Chem B ; 111(18): 4653-8, 2007 May 10.
Article in English | MEDLINE | ID: mdl-17474693

ABSTRACT

The covalent and ionic clusters of ammonium nitrate and hydroxyl ammonium nitrate are characterized using density functional theory and second-order vibrational perturbation theory. The most stable structures are covalent acid-base pairs for the monomers and ionic acid-base pairs for the dimers. The hydrogen-bonding distances are greater in the ionic dimers than in the covalent monomers, and the stretching frequencies are significantly different in the covalent and ionic clusters. The anharmonicity of the potential energy surfaces is found to influence the geometries, frequencies, and nuclear magnetic shielding constants for these systems. The inclusion of anharmonic effects significantly decreases many of the calculated vibrational frequencies in these clusters and improves the agreement of the calculated frequencies with the experimental data available for the isolated neutral species. The calculations of nuclear magnetic shielding constants for all nuclei in these clusters illustrate that quantitatively accurate predictions of nuclear magnetic shieldings for comparison to experimental data require the inclusion of anharmonic effects. These calculations of geometries, frequencies, and shielding constants provide insight into the significance of anharmonic effects in ionic materials and provide data that will be useful for the parametrization of molecular mechanical force fields for ionic liquids. Anharmonic effects will be particularly important for the study of proton transfer reactions in ionic materials.


Subject(s)
Hydroxylamine/chemistry , Models, Chemical , Nitrates/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Vibration
8.
J Phys Chem A ; 111(11): 2206-12, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17388289

ABSTRACT

The impact of nuclear quantum effects on hydrogen bonding is investigated for a series of hydrogen fluoride (HF)n clusters and a partially solvated fluoride anion, F-(H2O). The nuclear quantum effects are included using the path integral formalism in conjunction with the Car-Parrinello molecular dynamics (PICPMD) method and using the second-order vibrational perturbation theory (VPT2) approach. For the HF clusters, a directional change in the impact of nuclear quantum effects on the hydrogen-bonding strength is observed as the clusters evolve toward the condensed phase. Specifically, the inclusion of nuclear quantum effects increases the F-F distances for the (HF)n=2-4 clusters and decreases the F-F distances for the (HF)n>4 clusters. This directional change occurs because the enhanced electrostatic interactions between the HF monomers become more dominant than the zero point energy effects of librational modes as the size of the HF clusters increases. For the F-(H2O) system, the inclusion of nuclear quantum effects decreases the F-O distance and strengthens the hydrogen bonding interaction between the fluoride anion and the water molecule because of enhanced electrostatic interactions. The vibrationally averaged 19F shielding constant for F-(H2O) is significantly lower than the value for the equilibrium geometry, indicating that the electronic density on the fluorine decreases as a result of the quantum delocalization of the shared hydrogen. Deuteration of this system leads to an increase in the vibrationally averaged F-O distance and nuclear magnetic shielding constant because of the smaller degree of quantum delocalization for deuterium.


Subject(s)
Models, Chemical , Anions/chemistry , Dimerization , Fluorides/chemistry , Hydrofluoric Acid/chemistry , Hydrogen Bonding , Vibration
9.
J Phys Chem A ; 110(33): 9983-7, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-16913669

ABSTRACT

A method that includes explicit electron-proton correlation directly into the nuclear-electronic orbital self-consistent-field framework is presented. This nuclear-electronic orbital explicitly correlated Hartree-Fock (NEO-XCHF) scheme is formulated using Gaussian basis functions for the electrons and the quantum nuclei in conjunction with Gaussian-type geminal functions. The NEO approach is designed for the quantum treatment of a relatively small number of nuclei, such as the hydrogen nuclei involved in key hydrogen bonding interactions or hydrogen transfer reactions. The conventional nuclear-electronic-orbital-based methods produce nuclear wave functions that are too localized, leading to severe overestimations of hydrogen vibrational frequencies, as well as inaccuracies in geometries, isotope effects, couplings, and tunneling splittings. The application of the NEO-XCHF approach to a model system illustrates that the description of the nuclear wave function is significantly improved by the inclusion of explicit electron-proton correlation. In contrast to the NEO-HF method, the NEO-XCHF method leads to hydrogen vibrational stretch frequencies that are in excellent agreement with those calculated from grid-based methods. This approach is computationally practical for many-electron systems because only a relatively small number of nuclei are treated quantum mechanically and only electron-proton correlation is treated explicitly. Electron-electron dynamical correlation can be included with density functional theory or perturbation theory methods.

10.
J Chem Phys ; 123(1): 014303, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16035831

ABSTRACT

Fundamental issues associated with the application of the nuclear-electronic orbital (NEO) approach to hydrogen transfer systems are addressed. In the NEO approach, specified nuclei are treated quantum mechanically on the same level as the electrons, and mixed nuclear-electronic wavefunctions are calculated with molecular orbital methods. The positions of the nuclear basis function centers are optimized variationally. In the application of the NEO approach to hydrogen transfer systems, the hydrogen nuclei and all electrons are treated quantum mechanically. Within the NEO framework, the transferring hydrogen atom can be represented by two basis function centers to allow delocalization of the proton vibrational wavefunction. In this paper, the NEO approach is applied to the [He-H-He]+ and [He-H-He]++ model systems. Analyses of technical issues pertaining to flexibility of the basis set to describe both single and double well proton potential energy surfaces, linear dependency of the hydrogen basis functions, multiple minima in the basis function center optimization, convergence of the number of hydrogen basis function centers, and basis set superposition error are presented. The accuracy of the NEO approach is tested by comparison to grid calculations for these model systems.


Subject(s)
Chemistry, Physical/methods , Hydrogen/chemistry , Electrons , Helium/chemistry , Models, Statistical , Models, Theoretical , Molecular Structure , Protons
11.
J Phys Chem A ; 109(45): 10410-7, 2005 Nov 17.
Article in English | MEDLINE | ID: mdl-16833338

ABSTRACT

The structural impact of nuclear quantum effects is investigated for a set of bihalides, [XHX](-), X = F, Cl, and Br, and the hydrogen fluoride dimer. Structures are calculated with the vibrational self-consistent-field (VSCF) method, the second-order vibrational perturbation theory method (VPT2), and the nuclear-electronic orbital (NEO) approach. In the VSCF and VPT2 methods, the vibrationally averaged geometries are calculated for the Born-Oppenheimer electronic potential energy surface. In the NEO approach, the hydrogen nuclei are treated quantum mechanically on the same level as the electrons, and mixed nuclear-electronic wave functions are calculated variationally with molecular orbital methods. Electron-electron and electron-proton dynamical correlation effects are included in the NEO approach using second-order perturbation theory (NEO-MP2). The nuclear quantum effects are found to alter the distances between the heavy atoms by 0.02-0.05 A for the systems studied. These effects are of similar magnitude as the electron correlation effects. For the bihalides, inclusion of the nuclear quantum effects with the NEO-MP2 or the VSCF method increases the X-X distance. The bihalide X-X distances are similar for both methods and are consistent with two-dimensional grid calculations and experimental values, thereby validating the use of the computationally efficient NEO-MP2 method for these types of systems. For the hydrogen fluoride dimer, inclusion of nuclear quantum effects decreases the F-F distance with the NEO-MP2 method and increases the F-F distance with the VSCF and VPT2 methods. The VPT2 F-F distances for the hydrogen fluoride dimer and the deuterated form are consistent with the experimentally determined values. The NEO-MP2 F-F distance is in excellent agreement with the distance obtained experimentally for a model that removes the large amplitude bending motions. The analysis of these calculations provides insight into the significance of electron-electron and electron-proton correlation, anharmonicity of the vibrational modes, and nonadiabatic effects for hydrogen-bonded systems.


Subject(s)
Halogens/chemistry , Hydrofluoric Acid/chemistry , Quantum Theory , Dimerization , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...