Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13596, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866867

ABSTRACT

The RE1 silencing transcription factor (REST) is a driver of sonic hedgehog (SHH) medulloblastoma genesis. Our previous studies showed that REST enhances cell proliferation, metastasis and vascular growth and blocks neuronal differentiation to drive progression of SHH medulloblastoma tumors. Here, we demonstrate that REST promotes autophagy, a pathway that is found to be significantly enriched in human medulloblastoma tumors relative to normal cerebella. In SHH medulloblastoma tumor xenografts, REST elevation is strongly correlated with increased expression of the hypoxia-inducible factor 1-alpha (HIF1α)-a positive regulator of autophagy, and with reduced expression of the von Hippel-Lindau (VHL) tumor suppressor protein - a component of an E3 ligase complex that ubiquitinates HIF1α. Human SHH-medulloblastoma tumors with higher REST expression exhibit nuclear localization of HIF1α, in contrast to its cytoplasmic localization in low-REST tumors. In vitro, REST knockdown promotes an increase in VHL levels and a decrease in cytoplasmic HIF1α protein levels, and autophagy flux. In contrast, REST elevation causes a decline in VHL levels, as well as its interaction with HIF1α, resulting in a reduction in HIF1α ubiquitination and an increase in autophagy flux. These data suggest that REST elevation promotes autophagy in SHH medulloblastoma cells by modulating HIF1α ubiquitination and stability in a VHL-dependent manner. Thus, our study is one of the first to connect VHL to REST-dependent control of autophagy in a subset of medulloblastomas.


Subject(s)
Autophagy , Cerebellar Neoplasms , Hedgehog Proteins , Hypoxia-Inducible Factor 1, alpha Subunit , Medulloblastoma , Von Hippel-Lindau Tumor Suppressor Protein , Medulloblastoma/metabolism , Medulloblastoma/pathology , Medulloblastoma/genetics , Humans , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Autophagy/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cell Line, Tumor , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/genetics , Mice , Down-Regulation , Gene Expression Regulation, Neoplastic , Ubiquitination , Repressor Proteins
2.
BMC Cancer ; 23(1): 488, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37254069

ABSTRACT

BACKGROUND: Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their individual cellular constituents has also created new opportunities to generate single-cell atlases for many organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas - tumors of mesenchymal origin - are subject to the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three aggressive subtypes: osteosarcoma (OS), Ewing sarcoma (ES), desmoplastic small round cell tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from more widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tissue phenotype or pathognomonic fusion proteins. RESULTS: We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei from ES, DSRCT, and OS PDXs. We detected warm dissociation artifacts in single-cell samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were observed regardless of the dissociation method. In addition, we showed that dissociation method biases could be computationally corrected. CONCLUSIONS: We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in sarcoma PDXs.


Subject(s)
Sarcoma, Ewing , Sarcoma , Soft Tissue Neoplasms , Humans , Transcriptome , Sarcoma/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sequence Analysis, RNA/methods , RNA-Seq/methods
3.
Front Oncol ; 12: 855167, 2022.
Article in English | MEDLINE | ID: mdl-35600406

ABSTRACT

The RE1 Silencing Transcription Factor (REST) is a major regulator of neurogenesis and brain development. Medulloblastoma (MB) is a pediatric brain cancer characterized by a blockade of neuronal specification. REST gene expression is aberrantly elevated in a subset of MBs that are driven by constitutive activation of sonic hedgehog (SHH) signaling in cerebellar granular progenitor cells (CGNPs), the cells of origin of this subgroup of tumors. To understand its transcriptional deregulation in MBs, we first studied control of Rest gene expression during neuronal differentiation of normal mouse CGNPs. Higher Rest expression was observed in proliferating CGNPs compared to differentiating neurons. Interestingly, two Rest isoforms were expressed in CGNPs, of which only one showed a significant reduction in expression during neurogenesis. In proliferating CGNPs, higher MLL4 and KDM7A activities opposed by the repressive polycomb repressive complex 2 (PRC2) and the G9A/G9A-like protein (GLP) complex function allowed Rest homeostasis. During differentiation, reduction in MLL4 enrichment on chromatin, in conjunction with an increase in PRC2/G9A/GLP/KDM7A activities promoted a decline in Rest expression. These findings suggest a lineage-context specific paradoxical role for KDM7A in the regulation of Rest expression in CGNPs. In human SHH-MBs (SHH-α and SHH-ß) where elevated REST gene expression is associated with poor prognosis, up- or downregulation of KDM7A caused a significant worsening in patient survival. Our studies are the first to implicate KDM7A in REST regulation and in MB biology.

4.
Nat Commun ; 13(1): 588, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102191

ABSTRACT

High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Oncogenes/genetics , RNA Splicing/genetics , Adult , Alternative Splicing/genetics , Animals , Base Sequence , Binding Sites , Brain Neoplasms/pathology , Cell Line, Tumor , Child , Chromatin/metabolism , Exons/genetics , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Glioma/pathology , Humans , MAP Kinase Signaling System , Mice , Mutation/genetics , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins/metabolism , Spliceosomes/genetics , Transcription Factors/metabolism , ras Proteins/metabolism
5.
Methods Mol Biol ; 2423: 39-50, 2022.
Article in English | MEDLINE | ID: mdl-34978686

ABSTRACT

Studies of DNA-protein interactions have revealed regulatory mechanisms of DNA replication, repair, remodeling, and transcription. Perturbation of any or all of these processes result in differential gene expression that can lead to tumor development. Chromatin immunoprecipitation assay (ChIP), currently the only method available to explore DNA-binding in vivo, has become a vastly utilized tool for cancer research. In this article we discuss an assay specified for a pediatric medulloblastoma (MB) cell line DAOY used to determine binding of transcription factors, to detect histone modifications, and to identify novel therapeutic targets.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Cell Line, Tumor , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Child , Chromatin/genetics , Chromatin Immunoprecipitation/methods , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Transcription Factors/metabolism
6.
Mol Oncol ; 15(5): 1486-1506, 2021 05.
Article in English | MEDLINE | ID: mdl-33469989

ABSTRACT

Expression of the RE1-silencing transcription factor (REST), a master regulator of neurogenesis, is elevated in medulloblastoma (MB) tumors. A cell-intrinsic function for REST in MB tumorigenesis is known. However, a role for REST in the regulation of MB tumor microenvironment has not been investigated. Here, we implicate REST in remodeling of the MB vasculature and describe underlying mechanisms. Using RESTTG mice, we demonstrate that elevated REST expression in cerebellar granule cell progenitors, the cells of origin of sonic hedgehog (SHH) MBs, increased vascular growth. This was recapitulated in MB xenograft models and validated by transcriptomic analyses of human MB samples. REST upregulation was associated with enhanced secretion of proangiogenic factors. Surprisingly, a REST-dependent increase in the expression of the proangiogenic transcription factor E26 oncogene homolog 1, and its target gene encoding the vascular endothelial growth factor receptor-1, was observed in MB cells, which coincided with their localization at the tumor vasculature. These observations were confirmed by RNA-Seq and microarray analyses of MB cells and SHH-MB tumors. Thus, our data suggest that REST elevation promotes vascular growth by autocrine and paracrine mechanisms.


Subject(s)
Cerebellar Neoplasms/blood supply , Medulloblastoma/blood supply , Neovascularization, Pathologic/genetics , Proto-Oncogene Protein c-ets-1/physiology , Repressor Proteins/physiology , Animals , Cell Proliferation/genetics , Cells, Cultured , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Human Umbilical Vein Endothelial Cells , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neovascularization, Pathologic/pathology , Tumor Microenvironment/genetics
7.
Bioinformatics ; 36(4): 1014-1021, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31501853

ABSTRACT

MOTIVATION: Functional genomics experiments generate genomewide signal profiles that are dense information sources for annotating the regulatory elements. These profiles measure epigenetic activity at the nucleotide resolution and they exhibit distinctive patterns as they fluctuate along the genome. Most notable of these patterns are the valley patterns that are prevalently observed in assays such as ChIP Sequencing and bisulfite sequencing. The genomic positions of valleys pinpoint locations of cis-regulatory elements such as enhancers and insulators. Systematic identification of the valleys provides novel information for delineating the annotation of regulatory elements. Nevertheless, the valleys are not reported by majority of the analysis pipelines. RESULTS: We describe EpiSAFARI, a computational method for sensitive detection of valleys from diverse types of epigenetic profiles. EpiSAFARI employs a novel smoothing method for decreasing noise in signal profiles and accounts for technical factors such as sparse signals, mappability and nucleotide content. In performance comparisons, EpiSAFARI performs favorably in terms of accuracy. The histone modification valleys detected by EpiSAFARI exhibit high conservation, transcription factor binding and they are enriched in nascent transcription. In addition, the large clusters of histone valleys are found to be enriched at the promoters of the developmentally associated genes. Differential histone valleys exhibit concordance with differential DNase signal at cell line specific valleys. DNA methylation valleys exhibit elevated conservation and high transcription factor binding. Specifically, we observed enriched binding of transcription factors associated with chromatin structure around methyl-valleys. AVAILABILITY AND IMPLEMENTATION: EpiSAFARI is publicly available at https://github.com/harmancilab/EpiSAFARI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Epigenomics , Regulatory Sequences, Nucleic Acid , Epigenesis, Genetic , Histones
8.
Sci Signal ; 12(565)2019 01 22.
Article in English | MEDLINE | ID: mdl-30670636

ABSTRACT

In medulloblastomas (MBs), the expression and activity of RE1-silencing transcription factor (REST) is increased in tumors driven by the sonic hedgehog (SHH) pathway, specifically the SHH-α (children 3 to 16 years) and SHH-ß (infants) subgroups. Neuronal maturation is greater in SHH-ß than SHH-α tumors, but both correlate with poor overall patient survival. We studied the contribution of REST to MB using a transgenic mouse model (RESTTG ) wherein conditional NeuroD2-controlled REST transgene expression in lineage-committed Ptch1 +/- cerebellar granule neuron progenitors (CGNPs) accelerated tumorigenesis and increased penetrance and infiltrative disease. This model revealed a neuronal maturation context-specific antagonistic interplay between the transcriptional repressor REST and the activator GLI1 at Ptch1 Expression of Arrb1, which encodes ß-arrestin1 (a GLI1 inhibitor), was substantially reduced in proliferating and, to a lesser extent, lineage-committed RESTTG cells compared with wild-type proliferating CGNPs. Lineage-committed RESTTG cells also had decreased GLI1 activity and increased histone H3K9 methylation at the Ptch1 locus, which correlated with premature silencing of Ptch1 These cells also had decreased expression of Pten, which encodes a negative regulator of the kinase AKT. Expression of PTCH1 and GLI1 were less, and ARRB1 was somewhat greater, in patient SHH-ß than SHH-α MBs, whereas that of PTEN was similarly lower in both subtypes than in others. Inhibition of histone modifiers or AKT reduced proliferation and induced apoptosis, respectively, in cultured REST-high MB cells. Our findings linking REST to differentiation-specific chromatin remodeling, PTCH1 silencing, and AKT activation in MB tissues reveal potential subgroup-specific therapeutic targets for MB patients.


Subject(s)
Cerebellar Neoplasms/genetics , Chromatin/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Patched-1 Receptor/genetics , Proto-Oncogene Proteins c-akt/genetics , Repressor Proteins/genetics , Adult , Animals , Cell Line, Tumor , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Child , Chromatin/metabolism , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Humans , Infant , Male , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Neoplasm Staging , Patched-1 Receptor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Transplantation, Heterologous
9.
Mol Cancer Res ; 15(8): 1073-1084, 2017 08.
Article in English | MEDLINE | ID: mdl-28483947

ABSTRACT

The deubiquitylase (DUB) USP37 is a component of the ubiquitin system and controls cell proliferation by regulating the stability of the cyclin-dependent kinase inhibitor 1B, (CDKN1B/p27Kip1). The expression of USP37 is downregulated in human medulloblastoma tumor specimens. In the current study, we show that USP37 prevents medulloblastoma growth in mouse orthotopic models, suggesting that it has tumor-suppressive properties in this neural cancer. Here, we also report on the mechanism underlying USP37 loss in medulloblastoma. Previously, we observed that the expression of USP37 is transcriptionally repressed by the RE1 silencing transcription factor (REST), which requires chromatin remodeling factors for its activity. Genetic and pharmacologic approaches were employed to identify a specific role for G9a, a histone methyltransferase (HMT), in promoting methylation of histone H3 lysine-9 (H3K9) mono- and dimethylation, and surprisingly trimethylation, at the USP37 promoter to repress its gene expression. G9a inhibition also blocked the tumorigenic potential of medulloblastoma cells in vivo Using isogenic low- and high-REST medulloblastoma cells, we further showed a REST-dependent elevation in G9a activity, which further increased mono- and trimethylation of histone H3K9, accompanied by downregulation of USP37 expression. Together, these findings reveal a role for REST-associated G9a and histone H3K9 methylation in the repression of USP37 expression in medulloblastoma.Implications: Reactivation of USP37 by G9a inhibition has the potential for therapeutic applications in REST-expressing medulloblastomas. Mol Cancer Res; 15(8); 1073-84. ©2017 AACR.


Subject(s)
Endopeptidases/genetics , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/genetics , Medulloblastoma/genetics , Repressor Proteins/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Histones/genetics , Humans , Medulloblastoma/pathology , Methylation , Methyltransferases/genetics , Mice , Ubiquitin/genetics , Xenograft Model Antitumor Assays
10.
Proc Natl Acad Sci U S A ; 105(37): 13787-92, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18784366

ABSTRACT

Antisense oligodeoxynucleotides (AONs) and short interfering RNAs (siRNAs) effect posttranscriptional gene silencing (PTGS) by hybridizing to an mRNA and then directing its cleavage. To understand the constraints that mRNA structure imposes on AON- vs. siRNA-mediated PTGS, AON- and siRNA-mediated cleavage of defined mRNA structures was monitored in Drosophila embryo whole-cell lysates. We observed that AON-directed cleavage was approximately 3-fold faster than cleavage with a siRNA directed to the same target site. Furthermore, and unexpectedly, AON-mediated cleavage was found to be much less fastidious with respect to target sequence accessibility, as measured by the presence of unpaired nucleotides, than a corresponding siRNA. Nonetheless, in vivo, siRNAs silenced their mRNA target at least 2-fold more efficiently than the corresponding AON. These seemingly contradictory results suggested that additional, as yet undefined factors play an important role in regulating PTGS efficiency in vivo. We used a well defined RNA-binding protein, alphaCP, and its corresponding high-affinity RNA-binding site to explore this hypothesis. We found that prebound alphaCP effectively blocked AON-mediated cleavage of the RNA-binding site compared with cleavage of the site in the absence of alphaCP. We conclude that higher-order structures formed by RNA and bound proteins play an important role in determining the efficiency of AON-directed PTGS. We hypothesize that strategies aimed at removing RNA-binding proteins might significantly improve AON-mediated PTGS in vivo.


Subject(s)
RNA Interference , Animals , Base Sequence , Cell Line , Drosophila melanogaster/genetics , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Oligonucleotides, Antisense/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease H/metabolism
11.
Nucleic Acids Res ; 36(2): 559-69, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18056083

ABSTRACT

Light-activated antisense oligodeoxynucleotides (asODNs) were developed to control the degradation of target mRNA in living cells by RNase H. A 20-mer asODN previously shown to target c-myb, a hematopoietic transcription factor, was covalently attached via a photocleavable linker (PL) to partially complementary 20-mer sense strands (sODNs). In the 'caged' state, the sODN blocked hybridization of the asODN to c-myb mRNA. Six asODN-PL-sODN conjugates, C1-C6, were synthesized. C5, with twelve complementary bases, gave the largest decrease in melting temperature (T(m)) upon UV irradiation (DeltaT(m) = -29 degrees C). The most thermally stable conjugate, C6 (T(m) = 84 degrees C), gave the lowest background RNase H activity, with just 8.6% degradation of an RNA 40-mer after 1 h incubation. In biochemical assays with C6, RNA digestion increased 10-fold 10 min after UV irradiation. Finally, phosphorothioated analogs S-C5 and S-C6 were synthesized to test activity in cultured K562 (human leukemia) cells. No knockdown of c-myb mRNA or protein was observed with intact S-C5 or S-C6, whereas more than half of c-myb mRNA was degraded 24 h after photoactivation. Two-fold photomodulation of c-MYB protein levels was also observed with S-C5. However, no photomodulation of c-MYB protein levels was observed with S-C6, perhaps due to the greater stability of this duplex.


Subject(s)
Gene Expression Regulation, Neoplastic , Oligodeoxyribonucleotides, Antisense/chemistry , DNA, Neoplasm/analysis , Gene Expression Regulation, Neoplastic/radiation effects , Genes, myb , Humans , K562 Cells , Nucleic Acid Denaturation , Oligodeoxyribonucleotides, Antisense/radiation effects , Photochemistry , RNA, Messenger/metabolism , RNA, Neoplasm/analysis , Ribonuclease H/metabolism , Ultraviolet Rays
12.
Genes Dev ; 19(1): 65-76, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15630020

ABSTRACT

Activation and repression of transcription in eukaryotes involve changes in the chromatin fiber that can be accomplished by covalent modification of the histone tails or the replacement of the canonical histones with other variants. Here we show that the histone H2A variant of Drosophila melanogaster, H2Av, localizes to the centromeric heterochromatin, and it is recruited to an ectopic heterochromatin site formed by a transgene array. His2Av behaves genetically as a PcG gene and mutations in His2Av suppress position effect variegation (PEV), suggesting that this histone variant is required for euchromatic silencing and heterochromatin formation. His2Av mutants show reduced acetylation of histone H4 at Lys 12, decreased methylation of histone H3 at Lys 9, and a reduction in HP1 recruitment to the centromeric region. H2Av accumulation or histone H4 Lys 12 acetylation is not affected by mutations in Su(var)3-9 or Su(var)2-5. The results suggest an ordered cascade of events leading to the establishment of heterochromatin and requiring the recruitment of the histone H2Av variant followed by H4 Lys 12 acetylation as necessary steps before H3 Lys 9 methylation and HP1 recruitment can take place.


Subject(s)
Drosophila Proteins/metabolism , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Mutation , Acetylation , Animals , Chromosomal Proteins, Non-Histone/metabolism , Drosophila/chemistry , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Female , Gene Expression Regulation, Developmental , Gene Silencing , Larva , Male , Methylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...