Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Expert Rev Proteomics ; 21(5-6): 229-235, 2024.
Article in English | MEDLINE | ID: mdl-38753566

ABSTRACT

INTRODUCTION: Regenerative myogenesis plays a crucial role in mature myofibers to counteract muscular injury or dysfunction due to neuromuscular disorders. The activation of specialized myogenic stem cells, called satellite cells, is intrinsically involved in proliferation and differentiation, followed by myoblast fusion and the formation of multinucleated myofibers. AREAS COVERED: This report provides an overview of the role of satellite cells in the neuromuscular system and the potential future impact of proteomic analyses for biomarker discovery, as well as the identification of novel therapeutic targets in muscle disease. The article reviews the ways in which the systematic analysis of satellite cells, myoblasts, and myocytes by single-cell proteomics can help to better understand the process of myofiber regeneration. EXPERT OPINION: In order to better comprehend satellite cell dysfunction in neuromuscular disorders, mass spectrometry-based proteomics is an excellent large-scale analytical tool for the systematic profiling of pathophysiological processes. The optimized isolation of muscle-derived cells can be routinely performed by mechanical/enzymatic dissociation protocols, followed by fluorescence-activated cell sorting in specialized flow cytometers. Ultrasensitive single-cell proteomics using label-free quantitation methods or approaches that utilize tandem mass tags are ideal bioanalytical approaches to study the pathophysiological role of stem cells in neuromuscular disease.


Subject(s)
Proteomics , Satellite Cells, Skeletal Muscle , Proteomics/methods , Humans , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Animals , Muscle Development , Biomarkers/metabolism , Cell Differentiation , Single-Cell Analysis/methods
2.
Eur J Transl Myol ; 34(2)2024 May 24.
Article in English | MEDLINE | ID: mdl-38787292

ABSTRACT

During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.

3.
Eur J Transl Myol ; 34(2)2024 May 24.
Article in English | MEDLINE | ID: mdl-38787300

ABSTRACT

Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.

4.
Proteomes ; 12(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250815

ABSTRACT

This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.

5.
Cells ; 12(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37947638

ABSTRACT

Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.


Subject(s)
Proteome , Proteomics , Humans , Proteome/metabolism , Proteomics/methods , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Mass Spectrometry
6.
Eur J Transl Myol ; 33(4)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37846661

ABSTRACT

Duchenne muscular dystrophy is a highly progressive muscle wasting disease of early childhood and characterized by complex pathophysiological and histopathological changes in the voluntary contractile system, including myonecrosis, chronic inflammation, fat substitution and reactive myofibrosis. The continued loss of functional myofibres and replacement with non-contractile cells, as well as extensive tissue scarring and decline in tissue elasticity, leads to severe skeletal muscle weakness. In addition, dystrophic muscles exhibit a greatly diminished regenerative capacity to counteract the ongoing process of fibre degeneration. In normal muscle tissues, an abundant stem cell pool consisting of satellite cells that are localized between the sarcolemma and basal lamina, provides a rich source for the production of activated myogenic progenitor cells that are involved in efficient myofibre repair and tissue regeneration. Interestingly, the self-renewal of satellite cells for maintaining an essential pool of stem cells in matured skeletal muscles is increased in dystrophin-deficient fibres. However, satellite cell hyperplasia does not result in efficient recovery of dystrophic muscles due to impaired asymmetric cell divisions. The lack of expression of the full-length dystrophin isoform Dp427-M, which is due to primary defects in the DMD gene,  appears to affect key regulators of satellite cell polarity causing a reduced differentiation of myogenic progenitors, which are essential for myofibre regeneration. This review outlines the complexity of dystrophinopathy and describes the importance of the pathophysiological role of satellite cell dysfunction. A brief discussion of the bioanalytical usefulness of single cell proteomics for future studies of satellite cell biology is provided.

7.
Expert Rev Proteomics ; 20(7-9): 125-142, 2023.
Article in English | MEDLINE | ID: mdl-37668143

ABSTRACT

INTRODUCTION: Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED: The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION: Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.


Subject(s)
Proteomics , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Humans , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Muscle, Skeletal/metabolism , Sarcoplasmic Reticulum , Membrane Proteins/metabolism , Calcium/chemistry , Calcium/metabolism
8.
Eur J Transl Myol ; 33(3)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37545360

ABSTRACT

Neuromuscular diseases with primary muscle wasting symptoms may also display multi-systemic changes in the body and exhibit secondary pathophysiological alterations in various non-muscle tissues. In some cases, this includes proteome-wide alterations and/or adaptations in the central nervous system. Thus, in order to provide an improved bioanalytical basis for the comprehensive evaluation of animal models that are routinely used in muscle research, this report describes the mass spectrometry-based proteomic characterization of the mouse brain. Crude tissue extracts were examined by bottom-up proteomics and detected 4558 distinct protein species. The detailed analysis of the brain proteome revealed the presence of abundant cellular proteoforms in the neuronal cytoskeleton, as well as various brain region enriched proteins, including markers of the cerebral cortex, cerebellum, hippocampus and the olfactory bulb. Neuroproteomic markers of specific cell types in the brain were identified in association with various types of neurons and glia cells. Markers of subcellular structures were established for the plasmalemma, nucleus, endoplasmic reticulum, mitochondria and other crucial organelles, as well as synaptic components that are involved in presynaptic vesicle docking, neurotransmitter release and synapse remodelling.

9.
Eur J Transl Myol ; 33(3)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37565261

ABSTRACT

The wobbler mouse is a widely used model system of amyotrophic lateral sclerosis and exhibits progressive neurodegeneration and neuroinflammation in association with skeletal muscle wasting. This study has used wobbler brain preparations for the systematic and mass spectrometric determination of proteome-wide changes. The proteomic characterization of total protein extracts from wobbler specimens was carried out with the help of an Orbitrap mass spectrometer and revealed elevated levels of glia cell marker proteins, i.e., glial fibrillary acidic protein and the actin-binding protein coronin. In contrast, the abundance of the actin-binding protein neurabin and the scaffolding protein named piccolo of the presynaptic cytomatrix were shown to be reduced. The increased abundance of glial fibrillary acidic protein, which is frequently used in neuropathological studies as a marker protein of glial scar formation, was confirmed by immunoblotting. In analogy, the proteomic profiling of the brain from another established murine model of motor neuron disease, the SOD1mouse, also showed increased levels of this intermediate filament protein. This suggests that neurodegenerative processes are associated with astrogliosis in both the wobbler and SOD1 brain.

10.
Biomolecules ; 13(7)2023 07 12.
Article in English | MEDLINE | ID: mdl-37509144

ABSTRACT

The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.


Subject(s)
Diaphragm , Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Diaphragm/metabolism , Diaphragm/pathology , Proteomics , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Biomarkers/metabolism
11.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768735

ABSTRACT

The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.


Subject(s)
Sarcopenia , Aged , Animals , Humans , Sarcopenia/metabolism , Proteomics , Frail Elderly , Quality of Life , Muscle, Skeletal/metabolism , Troponin/metabolism , Myosin Heavy Chains/metabolism , Muscle Fibers, Skeletal/metabolism
12.
Methods Mol Biol ; 2596: 147-167, 2023.
Article in English | MEDLINE | ID: mdl-36378438

ABSTRACT

Many biomedically relevant biomarkers are proteins with characteristic biochemical properties and a relatively restricted subcellular distribution. The comparative and mass spectrometry-based proteomic analysis of body fluids can be particularly instrumental for the targeted identification of novel protein biomarkers with pathological relevance. In this respect, new research efforts in biomarker discovery focus on the systematic mapping of the human saliva proteome, as well as the pathobiochemical identification of disease-related modifications or concentration changes in specific saliva proteins. As a product of exocrine secretion, saliva can be considered an ideal source for the biochemical identification of new disease indicators. Importantly, saliva represents a body fluid that is continuously available for diagnostic and prognostic assessments. This chapter gives an overview of saliva proteomics, including a discussion of the usefulness of both liquid chromatography and two-dimensional gel electrophoresis for efficient protein separation in saliva proteomics.


Subject(s)
Proteomics , Saliva , Humans , Proteomics/methods , Saliva/metabolism , Salivary Proteins and Peptides/metabolism , Electrophoresis, Gel, Two-Dimensional , Proteome/metabolism , Biomarkers/metabolism
13.
Methods Mol Biol ; 2596: 291-302, 2023.
Article in English | MEDLINE | ID: mdl-36378446

ABSTRACT

The biochemical and cell biological profiling of contractile fiber types and subcellular structures plays a central role in basic and applied myology. Mass spectrometry-based proteomics presents an ideal approach for the systematic identification of proteomic and subproteomic markers. These representative components of fast versus slow muscle fibers and their subcellular fractions are highly useful for in-depth surveys of skeletal muscle adaptations to physiological challenges, as well as the improvement of diagnostic, prognostic, and therapy-monitoring methodologies in muscle pathology. This chapter outlines the identification of subproteomic markers for skeletal muscle profiling based on bottom-up and top-down approaches, including fluorescence two-dimensional difference gel electrophoresis (2D-DIGE).


Subject(s)
Muscle Proteins , Proteomics , Proteomics/methods , Muscle Proteins/analysis , Two-Dimensional Difference Gel Electrophoresis/methods , Muscle, Skeletal/metabolism , Mass Spectrometry , Biomarkers/metabolism , Proteome/metabolism , Electrophoresis, Gel, Two-Dimensional
14.
Methods Mol Biol ; 2596: 377-395, 2023.
Article in English | MEDLINE | ID: mdl-36378452

ABSTRACT

Following large-scale protein separation by two-dimensional gel electrophoresis or liquid chromatography, mass spectrometry-based proteomics can be used for the swift identification and characterization of cardiac proteins and their various proteoforms. Comparative cardiac proteomics has been widely applied for the systematic analysis of heart disease and the establishment of novel diagnostic protein biomarkers. The X-linked neuromuscular disorder Duchenne muscular dystrophy is a multisystemic disease that is characterized by late-onset cardiomyopathy. This chapter outlines the bioinformatic analysis of the subproteomic profile of cardiac tissue from wild-type versus the dystrophic mdx-4cv mouse model of dystrophinopathy.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Mice , Animals , Mice, Inbred mdx , Computational Biology , Muscular Dystrophy, Duchenne/metabolism , Proteomics/methods , Cardiomyopathies/metabolism , Proteins/metabolism , Muscle, Skeletal/metabolism , Dystrophin/genetics , Dystrophin/metabolism
15.
Methods Mol Biol ; 2596: 445-464, 2023.
Article in English | MEDLINE | ID: mdl-36378456

ABSTRACT

Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a key biochemical method for the comparative analysis of complex protein mixtures. The technique focuses on the identification and characterization of individual protein species following gel electrophoretic separation making it an important analytical tool of top-down proteomics. In order to verify changes in the expression levels of a particular protein, as determined by 2D-DIGE analysis, and evaluate the subcellular localization of the proteoform of interest, immunofluorescence microscopy is very well suited. This chapter describes in detail the preparation of tissue specimens and the process of cryo-sectioning, as well as incubation with primary antibodies and fluorescently labeled secondary antibodies, followed by image analysis. As illustrative examples, the co-detection of immuno-labeled dystrophin and the Y-chromosome in skeletal muscle are shown, and the localization of calbindin in the cerebellum is presented.


Subject(s)
Image Processing, Computer-Assisted , Proteomics , Two-Dimensional Difference Gel Electrophoresis/methods , Proteomics/methods , Microscopy, Fluorescence , Muscle, Skeletal/metabolism , Electrophoresis, Gel, Two-Dimensional/methods
16.
Methods Mol Biol ; 2596: 465-480, 2023.
Article in English | MEDLINE | ID: mdl-36378457

ABSTRACT

Comparative gel electrophoretic analyses of normal versus pathological specimens can swiftly identify proteome-wide changes in the concentration of specific protein isoforms. The application of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) can be employed for the characterization of complex protein populations in health and disease. In order to verify pathoproteomic findings and correlate them to histopathological alterations, standardized histological and histochemical methodology can be applied for the cell biological analysis of normal versus pathological tissue samples. This chapter outlines the usage of histochemical ATPase staining of fast and slow fiber types in normal versus dystrophic skeletal muscles, as well as the application of hematoxylin and eosin staining of nuclei and the cellular body in kidney cells, and Sudan black staining of lipids in cryo-sections.


Subject(s)
Microscopy , Proteome , Two-Dimensional Difference Gel Electrophoresis/methods , Proteome/metabolism , Muscle, Skeletal/metabolism , Staining and Labeling
17.
Life (Basel) ; 12(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36362832

ABSTRACT

Deficiency in the membrane cytoskeletal protein dystrophin is the underlying cause of the progressive muscle wasting disease named Duchenne muscular dystrophy. In order to detect novel disease marker candidates and confirm the complexity of the pathobiochemical signature of dystrophinopathy, mass spectrometric screening approaches represent ideal tools for comprehensive biomarker discovery studies. In this report, we describe the comparative proteomic analysis of young versus aged diaphragm muscles from wild type versus the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. The survey confirmed the drastic reduction of the dystrophin-glycoprotein complex in the mdx-4cv diaphragm muscle and concomitant age-dependent changes in key markers of muscular dystrophy, including proteins involved in cytoskeletal organization, metabolite transportation, the cellular stress response and excitation-contraction coupling. Importantly, proteomic markers of the regulation of membrane repair, tissue regeneration and reactive myofibrosis were detected by mass spectrometry and changes in key proteins were confirmed by immunoblotting. Potential disease marker candidates include various isoforms of annexin, the matricellular protein periostin and a large number of collagens. Alterations in these proteoforms can be useful to evaluate adaptive, compensatory and pathobiochemical changes in the intracellular cytoskeleton, myofiber membrane integrity and the extracellular matrix in dystrophin-deficient skeletal muscle tissues.

18.
Proteomics ; 22(23-24): e2200003, 2022 12.
Article in English | MEDLINE | ID: mdl-35902360

ABSTRACT

The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Dystrophin/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Proteomics/methods , Calcium/metabolism , Mass Spectrometry/methods , Muscle, Skeletal/metabolism
19.
Histol Histopathol ; 37(2): 101-116, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34873679

ABSTRACT

Duchenne muscular dystrophy is an inherited disorder of early childhood that affects multiple systems in the body. Besides late-onset cardio-respiratory syndrome and various body-wide pathophysiological changes, X-linked muscular dystrophy is primarily classified as a disorder of the skeletal musculature. This is reflected by severe histopathological alterations in voluntary contractile tissues, including progressive fibre degeneration, fat substitution, reactive myofibrosis and chronic inflammation. The underlying cause for dystrophinopathy are genetic abnormalities in the DMD gene, which can result in the almost complete loss of the membrane cytoskeletal protein dystrophin, which triggers the collapse of the dystrophin-associated glycoprotein complex and disintegration of sarcolemmal integrity. This in turn results in an increased frequency of membrane micro-rupturing and abnormal calcium ion fluxes through the impaired plasmalemma, which renders muscle fibres more susceptible to enhanced proteolytic degradation and necrosis. This review focuses on the complexity of skeletal muscle changes in X-linked muscular dystrophy and outlines cell biological and histological alterations in correlation to proteome-wide variations as judged by mass spectrometric analyses. This includes a general outline of sample handling, subcellular fraction protocols and modern proteomic approaches using gel electrophoretic and liquid chromatographic methods for efficient protein separation prior to mass spectrometry. The proteomic profiling of the dystrophic and highly fibrotic diaphragm muscle is described as an example to swiftly identify novel proteomic markers of complex histopathological changes during skeletal muscle degeneration. The potential usefulness of new protein markers is examined in relation to key histopathological hallmarks for establishing improved diagnostic, prognostic and therapy-monitoring approaches in the field of dystrophinopathy.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Biomarkers/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Humans , Mass Spectrometry , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Proteome/metabolism , Proteomics/methods
20.
Expert Rev Proteomics ; 18(12): 1073-1086, 2021 12.
Article in English | MEDLINE | ID: mdl-34890519

ABSTRACT

INTRODUCTION: Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED: Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION: The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.


Subject(s)
Carbonic Anhydrases , Proteomics , Humans , Mass Spectrometry , Muscle Proteins , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...