Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Environ Mol Mutagen ; 65(1-2): 47-54, 2024.
Article in English | MEDLINE | ID: mdl-38465801

ABSTRACT

The etiology of bladder cancer among never smokers without occupational or environmental exposure to established urothelial carcinogens remains unclear. Urinary mutagenicity is an integrative measure that reflects recent exposure to genotoxic agents. Here, we investigated its potential association with bladder cancer in rural northern New England. We analyzed 156 bladder cancer cases and 247 cancer-free controls from a large population-based case-control study conducted in Maine, New Hampshire, and Vermont. Overnight urine samples were deconjugated enzymatically and the extracted organics were assessed for mutagenicity using the plate-incorporation Ames assay with the Salmonella frameshift strain YG1041 + S9. Logistic regression was used to estimate the odds ratios (OR) and 95% confidence intervals (CI) of bladder cancer in relation to having mutagenic versus nonmutagenic urine, adjusted for age, sex, and state, and stratified by smoking status (never, former, and current). We found evidence for an association between having mutagenic urine and increased bladder cancer risk among never smokers (OR = 3.8, 95% CI: 1.3-11.2) but not among former or current smokers. Risk could not be estimated among current smokers because nearly all cases and controls had mutagenic urine. Urinary mutagenicity among never-smoking controls could not be explained by recent exposure to established occupational and environmental mutagenic bladder carcinogens evaluated in our study. Our findings suggest that among never smokers, urinary mutagenicity potentially reflects genotoxic exposure profiles relevant to bladder carcinogenesis. Future studies are needed to replicate our findings and identify compounds and their sources that influence bladder cancer risk.


Subject(s)
Mutagens , Urinary Bladder Neoplasms , Humans , Mutagens/toxicity , Urinary Bladder , Case-Control Studies , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/genetics , New England/epidemiology , Carcinogens , Mutagenicity Tests
2.
Environ Health Perspect ; 128(4): 47005, 2020 04.
Article in English | MEDLINE | ID: mdl-32271623

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a diverse class of industrial chemicals with widespread environmental occurrence. Exposure to long-chain PFAS is associated with developmental toxicity, prompting their replacement with short-chain and fluoroether compounds. There is growing public concern over the safety of replacement PFAS. OBJECTIVE: We aimed to group PFAS based on shared toxicity phenotypes. METHODS: Zebrafish were developmentally exposed to 4,8-dioxa-3H-perfluorononanoate (ADONA), perfluoro-2-propoxypropanoic acid (GenX Free Acid), perfluoro-3,6-dioxa-4-methyl-7-octene-1-sulfonic acid (PFESA1), perfluorohexanesulfonic acid (PFHxS), perfluorohexanoic acid (PFHxA), perfluoro-n-octanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), or 0.4% dimethyl sulfoxide (DMSO) daily from 0-5 d post fertilization (dpf). At 6 dpf, developmental toxicity and developmental neurotoxicity assays were performed, and targeted analytical chemistry was used to measure media and tissue doses. To test whether aliphatic sulfonic acid PFAS cause the same toxicity phenotypes, perfluorobutanesulfonic acid (PFBS; 4-carbon), perfluoropentanesulfonic acid (PFPeS; 5-carbon), PFHxS (6-carbon), perfluoroheptanesulfonic acid (PFHpS; 7-carbon), and PFOS (8-carbon) were evaluated. RESULTS: PFHxS or PFOS exposure caused failed swim bladder inflation, abnormal ventroflexion of the tail, and hyperactivity at nonteratogenic concentrations. Exposure to PFHxA resulted in a unique hyperactivity signature. ADONA, PFESA1, or PFOA exposure resulted in detectable levels of parent compound in larval tissue but yielded negative toxicity results. GenX was unstable in DMSO, but stable and negative for toxicity when diluted in deionized water. Exposure to PFPeS, PFHxS, PFHpS, or PFOS resulted in a shared toxicity phenotype characterized by body axis and swim bladder defects and hyperactivity. CONCLUSIONS: All emerging fluoroether PFAS tested were negative for evaluated outcomes. Two unique toxicity signatures were identified arising from structurally dissimilar PFAS. Among sulfonic acid aliphatic PFAS, chemical potencies were correlated with increasing carbon chain length for developmental neurotoxicity, but not developmental toxicity. This study identified relationships between chemical structures and in vivo phenotypes that may arise from shared mechanisms of PFAS toxicity. These data suggest that developmental neurotoxicity is an important end point to consider for this class of widely occurring environmental chemicals. https://doi.org/10.1289/EHP5843.


Subject(s)
Fluorocarbons/toxicity , Neurotoxins/toxicity , Propionates/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Dose-Response Relationship, Drug , Tissue Distribution , Zebrafish/growth & development
3.
Toxicol Sci ; 172(1): 109-122, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31504981

ABSTRACT

Microbiota regulate important physiologic processes during early host development. They also biotransform xenobiotics and serve as key intermediaries for chemical exposure. Antimicrobial agents in the environment may disrupt these complex interactions and alter key metabolic functions provided by host-associated microbiota. To examine the role of microbiota in xenobiotic metabolism, we exposed zebrafish larvae to the antimicrobial agent triclosan. Conventionally colonized (CC), microbe-free axenic (AX), or axenic colonized on day 1 (AC1) zebrafish were exposed to 0.16-0.30 µM triclosan or vehicle on days 1, 6, 7, 8, and 9 days post fertilization (dpf). After 6 and 10 dpf, host-associated microbial community structure and putative function were assessed by 16S rRNA gene sequencing. At 10 dpf, triclosan exposure selected for bacterial taxa, including Rheinheimera. Triclosan-selected microbes were predicted to be enriched in pathways related to mechanisms of antibiotic resistance, sulfonation, oxidative stress, and drug metabolism. Furthermore, at 10 dpf, colonized zebrafish contained 2.5-3 times more triclosan relative to AX larvae. Nontargeted chemical analysis revealed that, relative to AX larvae, both cohorts of colonized larvae showed elevations in 23 chemical features, including parent triclosan and putative triclosan sulfate. Taken together, these data suggest that triclosan exposure selects for microbes that harbor the capacity to biotransform triclosan into chemical metabolites with unknown toxicity profiles. More broadly, these data support the concept that microbiota modify the toxicokinetics of xenobiotic exposure.

4.
Sci Rep ; 9(1): 7064, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068624

ABSTRACT

Estrogenic chemicals are widespread environmental contaminants associated with diverse health and ecological effects. During early vertebrate development, estrogen receptor signaling is critical for many different physiologic responses, including nervous system function. Recently, host-associated microbiota have been shown to influence neurodevelopment. Here, we hypothesized that microbiota may biotransform exogenous 17-ßestradiol (E2) and modify E2 effects on swimming behavior. Colonized zebrafish were continuously exposed to non-teratogenic E2 concentrations from 1 to 10 days post-fertilization (dpf). Changes in microbial composition and predicted metagenomic function were evaluated. Locomotor activity was assessed in colonized and axenic (microbe-free) zebrafish exposed to E2 using a standard light/dark behavioral assay. Zebrafish tissue was collected for chemistry analyses. While E2 exposure did not alter microbial composition or putative function, colonized E2-exposed larvae showed reduced locomotor activity in the light, in contrast to axenic E2-exposed larvae, which exhibited normal behavior. Measured E2 concentrations were significantly higher in axenic relative to colonized zebrafish. Integrated peak area for putative sulfonated and glucuronidated E2 metabolites showed a similar trend. These data demonstrate that E2 locomotor effects in the light phase are dependent on the presence of microbiota and suggest that microbiota influence chemical E2 toxicokinetics. More broadly, this work supports the concept that microbial colonization status may influence chemical toxicity.


Subject(s)
Estradiol/pharmacology , Germ-Free Life/drug effects , Microbiota/genetics , Zebrafish/embryology , Zebrafish/microbiology , Animals , Embryonic Development/drug effects , Estradiol/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Larva/drug effects , Larva/metabolism , Locomotion/drug effects , Microbiota/drug effects , Neurogenesis/drug effects , RNA, Ribosomal, 16S/genetics , Zebrafish/metabolism
5.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30835285

ABSTRACT

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Subject(s)
Computational Biology/methods , High-Throughput Screening Assays/methods , Toxicology/methods , Decision Making , Humans , Information Technology , Risk Assessment , Toxicokinetics , United States , United States Environmental Protection Agency
6.
Article in English | MEDLINE | ID: mdl-29555536

ABSTRACT

The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to false positive (chemical is detoxified in vivo) as well as false negative results (chemical is bioactivated in vivo) and thus potential mischaracterization of chemical hazard. To address this challenge, the ten most prevalent human liver cytochrome P450 (CYP) enzymes were introduced into a human cell line (HEK293T) with low endogenous metabolic capacity. The CYP enzymes were introduced via transfection of modified mRNAs as either singlets or as a mixture in relative proportions as expressed in human liver. Initial experiments using luminogenic substrates demonstrate that CYP enzyme activities are significantly increased when co-transfected with an mRNA encoding a CYP accessory protein, P450 oxidoreductase (POR). Transfected HEK293T cells demonstrate the ability to produce predicted metabolites following treatment with well-studied CYP substrates for at least 18 h post-treatment. As a demonstration of how this method can be used to retrofit existing HTS assays, a proof-of-concept screen for cytotoxicity in HEK293T cells was conducted using 56 test compounds. The results demonstrate that the xenobiotic metabolism conferred by transfection of CYP-encoding mRNAs shifts the dose-response relationship for some of the tested chemicals such as aflatoxin B1 (bioactivation) and fenazaquin (detoxification). Overall, transfection of CYP-encoding mRNAs is an effective and portable solution for retrofitting existing cell-based HTS assays with metabolic competence.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , High-Throughput Screening Assays/methods , RNA, Messenger/metabolism , Xenobiotics/metabolism , Aflatoxin B1/metabolism , Cytochrome P-450 Enzyme System/genetics , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Liver/enzymology , Quinazolines/metabolism , Transfection , Xenobiotics/administration & dosage
7.
PLoS One ; 12(9): e0184155, 2017.
Article in English | MEDLINE | ID: mdl-28898253

ABSTRACT

Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton's Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.


Subject(s)
Bioengineering , Organ Culture Techniques , Palate/embryology , Spheroids, Cellular , Alkaline Phosphatase/metabolism , Bioengineering/methods , Cell Differentiation/genetics , Cluster Analysis , Computational Biology/methods , Extracellular Matrix Proteins , Gene Expression Profiling , Gene Ontology , Humans , In Vitro Techniques , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Palate/metabolism , Time Factors , Transcriptome
8.
PLoS One ; 11(9): e0162522, 2016.
Article in English | MEDLINE | ID: mdl-27626938

ABSTRACT

Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses and protein response-based biochemical pathways represents a key mechanism through which nickel induces cytotoxicity and carcinogenesis. To identify protein responses and biochemical pathways that are critical to nickel-induced toxicity responses, we measured cytotoxicity and changes in expression and phosphorylation status of 14 critical biochemical pathway regulators in human BEAS-2B cells exposed to four concentrations of nickel using an integrated proteomic approach. A subset of the pathway regulators, including interleukin-6, and JNK, were found to be linearly correlated with cell viability, and may function as molecular determinants of cytotoxic responses of BEAS-2B cells to nickel exposures. In addition, 128 differentially expressed proteins were identified by two dimensional electrophoresis (2-DE) and mass spectrometry. Principal component analysis, hierarchical cluster analyses, and ingenuity signaling pathway analysis (IPA) identified putative nickel toxicity pathways. Some of the proteins and pathways identified have not previously been linked to nickel toxicity. Based on the consistent results obtained from both ELISA and 2-DE proteomic analysis, we propose a core signaling pathway regulating cytotoxic responses of human BEAS-2B cells to nickel exposures, which integrates a small set of proteins involved in glycolysis and gluconeogenesis pathways, apoptosis, protein degradation, and stress responses including inflammation and oxidative stress.


Subject(s)
Nickel/toxicity , Proteomics , Cells, Cultured , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Phosphorylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
Chemosphere ; 120: 690-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462314

ABSTRACT

U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S.


Subject(s)
Drinking Water/chemistry , Environmental Monitoring/statistics & numerical data , Geologic Sediments/chemistry , Mutagens/toxicity , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring/methods , Humans , Indians, North American , Maine , Mutagenicity Tests , Mutagens/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Salmonella/drug effects , Water Pollutants, Chemical/analysis
10.
J Proteome Res ; 14(1): 183-92, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25285964

ABSTRACT

Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.


Subject(s)
Cadmium/toxicity , Chromium/toxicity , Environmental Pollutants/toxicity , Nickel/toxicity , Proteome/metabolism , Apoptosis/drug effects , Cell Line , Cluster Analysis , Dose-Response Relationship, Drug , Drug Interactions , Gene Expression/drug effects , Gluconeogenesis/drug effects , Glycolysis/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphorylation , Protein Processing, Post-Translational , Proteome/genetics , Proteomics , Risk Assessment
11.
Reprod Toxicol ; 47: 59-69, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24887032

ABSTRACT

Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and testis (intact) proteomes in rats after 3 days of exposure. The adrenal accounted for most of the serum progesterone and all of the corticosterone increases in intact and castrated males. Serum luteinizing hormone, androstenedione, and testosterone in intact males shared a non-monotonic response suggesting transition from an acute stimulatory to a latent inhibitory response to exposure. Eight adrenal proteins were significantly altered with dose. There were unique proteomic changes between the adrenals of intact and castrated males. Six testis proteins in intact males had non-monotonic responses that significantly correlated with serum testosterone. Different dose-response curves for steroids and proteins in the adrenal and testis reveal novel adverse outcome pathways in intact and castrated male rats.


Subject(s)
Adrenal Glands/drug effects , Atrazine/toxicity , Herbicides/toxicity , Testis/drug effects , Adrenal Glands/metabolism , Androstenedione/blood , Animals , Atrazine/blood , Atrazine/pharmacokinetics , Castration , Corticosterone/blood , Herbicides/blood , Herbicides/pharmacokinetics , Luteinizing Hormone/blood , Male , Progesterone/blood , Proteome , Rats, Wistar , Testis/metabolism , Testosterone/blood
12.
Electrophoresis ; 33(24): 3745-55, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23161654

ABSTRACT

Apolipoprotein E (ApoE) is a major lipid carrier protein. In humans, ApoE is expressed in three polymorphic isoforms, which are encoded by three different alleles APOE2, APOE3, and APOE4. In the brains of Alzheimer's disease (AD) patients, each one of these three allelic isoforms is found in several "isoelectric" protein isoforms (qPI), i.e. protein isoforms resulting from PTMs altering the net charge (q) of the polypeptide. AD is a complex disease in which multiple causes and several risk factors affect the onset and disease outcome. A major risk factor for AD is ApoE4; therefore, it is important to characterize the different ApoE qPIs. We have implemented a detergent-based method for isolation and quantitation of protein isoforms, and we found differences in the solubility of protein isoforms depending on the type of solvent used. In this manuscript, we describe these methods and applied them to young human-ApoE targeted replacement mice. Our results indicate that there are no significant differences in the hippocampus proteome of these mice as a function of the APOE genotype.


Subject(s)
Apolipoprotein E3/biosynthesis , Apolipoprotein E4/biosynthesis , Proteome/analysis , Analysis of Variance , Animals , Apolipoprotein E3/analysis , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/analysis , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Creatine Kinase/analysis , Creatine Kinase/chemistry , Creatine Kinase/metabolism , Electrophoresis, Gel, Two-Dimensional , Genotype , Hippocampus/chemistry , Hippocampus/metabolism , Humans , Mice , Mice, Transgenic , Phosphopyruvate Hydratase/analysis , Phosphopyruvate Hydratase/chemistry , Phosphopyruvate Hydratase/metabolism , Protein Isoforms , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Solubility
13.
Neurotoxicology ; 33(3): 332-46, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22353443

ABSTRACT

Previously, we reported that acute treatment with propoxur or carbaryl decreased the duration of the photic after discharge (PhAD) of flash evoked potentials (FEPs). In the current studies, we compared the effects of acute or repeated exposure to a mixture of carbaryl and propoxur (1:1.45 ratio; propoxur:carbaryl) on the duration of the PhAD and brain ChE activity in Long Evans rats. Animals were exposed (po) either to a single dose (0, 3, 10, 45 or 75 mg/kg), or 14 daily dosages (0, 3, 10, 30, 45 mg/kg), of the mixture. Acute and repeated treatment with 3mg/kg (or greater) of the mixture produced dose-related inhibition of brain ChE activity. Compared to controls, the PhAD duration decreased after acute administration of 75 mg/kg or repeated treatment with 30 mg/kg of the mixture. The linear relationship between the percent of control brain ChE activity and the PhAD duration was similar for both exposure paradigms. Dose-response models for the acute and repeated exposure data did not differ for brain ChE activity or the duration of the PhAD. Repeated treatment with the mixture resulted in slightly less (13-22%) erythrocyte ChE inhibition than acute exposure. Both acute and repeated treatment resulted in dose-additive results for the PhAD duration and less than dose-additive responses (6-16%) for brain ChE activity for the middle range of dosages. Acute treatment resulted in greater than dose-additive erythrocyte ChE inhibition (15-18%) at the highest dosages. In contrast, repeated treatment resulted in less than dose-additive erythrocyte ChE inhibition (16-22%) at the middle dosages. Brain and plasma levels of propoxur and carbaryl did not differ between the acute and repeated dosing paradigms. In summary, a physiological measure of central nervous system function and brain ChE activity had similar responses after acute or repeated treatment with the carbamate mixture, and brain ChE showed only small deviations from dose-additivity. Erythrocyte ChE activity had larger differences between the acute and repeated treatment paradigms, and showed slightly greater deviations from dose-additivity. Because these treatments utilized larger dosages than anticipated environmental exposures, concern for non-additive effects in humans is minimized. The small magnitude of the deviations from dose-additivity also suggest that in the absence of repeated exposure data, results from an acute study of readily reversible carbamate toxicity can be used to estimate the response to repeated daily exposures.


Subject(s)
Brain/drug effects , Carbaryl/toxicity , Cholinesterase Inhibitors/toxicity , Cholinesterases/metabolism , Erythrocytes/drug effects , Evoked Potentials, Visual/drug effects , Photic Stimulation , Propoxur/toxicity , Animals , Brain/enzymology , Carbaryl/blood , Cholinesterase Inhibitors/blood , Cholinesterases/blood , Dose-Response Relationship, Drug , Erythrocytes/enzymology , Male , Propoxur/blood , Rats , Rats, Long-Evans , Reaction Time/drug effects , Time Factors
14.
PLoS One ; 6(4): e18707, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21541030

ABSTRACT

UNLABELLED: Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C) or high temperature (250°C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00340743.


Subject(s)
Brassicaceae/metabolism , Chlorophyllides/pharmacology , Colon/pathology , DNA Damage , Meat/adverse effects , Rectum/pathology , Yogurt , Adult , Amines/metabolism , Colon/drug effects , Cooking , Diet , Feces , Female , Heterocyclic Compounds/metabolism , Humans , Leukocytes/drug effects , Leukocytes/metabolism , Male , Middle Aged , Mutagenicity Tests , Pilot Projects , Rectum/drug effects , Young Adult
15.
Biochem Pharmacol ; 72(1): 115-23, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16678797

ABSTRACT

GST isoforms have been extensively studied in adult tissues but little is known about the composition and levels of these enzymes in fetal tissues. As part of our ongoing studies to determine the potential role of metabolic enzymes in mediating the differential susceptibility of different strains of mice to lung tumorigenesis following in utero exposure to 3-methylcholanthrene (MC), we screened for GST enzyme activity and for expression of the individual GSTalpha, pi, mu, and theta isoforms in murine fetal lung and liver tissues isolated from the parental strains and F1 crosses between C57BL/6 (B6) and BALB/c (C) mice. Using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, we found that treatment with MC had no effect on the levels of GST enzyme activity in either the fetal lung or liver in either of the two parental strains or their F1 crosses. Low levels of expression of each of the four enzymes were detected by Western blotting in both fetal lung and liver tissues in all four strains. A statistically significant 3.5-fold induction was observed only for GSTmu in the fetal lung of the parental strain of BALB/c mice 48 h after exposure to MC. None of the other enzymes showed any significant differences in the levels of expression following exposure to MC. Although strain-specific differences in the expression of the GSTs that were independent of MC treatment were observed, they could not account for the differences previously observed in either the Ki-ras mutational spectrum or lung tumor incidence in the different strains of mice. Similar results were obtained when the maternal metabolism of MC was assayed in liver microsomal preparations. The results are consistent with previous studies showing low levels and poor inducibility of phase II enzymes during gestation, and demonstrate for the first time that all four of the major GST enzymes are expressed in fetal tissues. While the high inducibility of activating enzymes, such as Cyp1a1, and low, uninducible levels of phase II conjugating enzymes probably account for the high susceptibility of the fetus to transplacentally induced tumor formation, the results also suggest that factors other than metabolism may account for the strain-specific differences in susceptibility to carcinogen-mediated lung tumor induction following in utero exposure to chemical carcinogens.


Subject(s)
Carcinogens/toxicity , Glutathione Transferase/metabolism , Liver/drug effects , Lung/drug effects , Methylcholanthrene/toxicity , Animals , Carcinogens/pharmacokinetics , Crosses, Genetic , Female , Glutathione Transferase/classification , Glutathione Transferase/genetics , Isoenzymes , Liver/embryology , Liver/enzymology , Lung/embryology , Lung/enzymology , Male , Maternal Exposure , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pregnancy , Species Specificity
16.
Toxicology ; 221(2-3): 158-65, 2006 Apr 17.
Article in English | MEDLINE | ID: mdl-16442688

ABSTRACT

Potassium bromate (KBrO3) is a chemical oxidizing agent found in drinking water as a disinfection byproduct of surface water ozonation. Chronic exposures to KBrO3 cause renal cell tumors in rats, hamsters and mice and thyroid and testicular mesothelial tumors in rats. Experimental evidence indicates that bromate mediates toxicological effects via the induction of oxidative stress. To investigate the contribution of oxidative stress in KBrO3-induced cancer, male F344 rats were administered KBrO3 in their drinking water at multiple concentrations for 2-100 weeks. Gene expression analyses were performed on kidney, thyroid and mesothelial cell RNA. Families of mRNA transcripts differentially expressed with respect to bromate treatment included multiple cancer, cell death, ion transport and oxidative stress genes. Multiple glutathione metabolism genes were up-regulated in kidney following carcinogenic (400 mg/L) but not non-carcinogenic (20 mg/L) bromate exposures. 8-Oxodeoxyguanosine glycosylase (Ogg1) mRNA was up-regulated in response to bromate treatment in kidney but not thyroid. A dramatic decrease in global gene expression changes was observed following 1mg/L compared to 20 mg/L bromate exposures. In a separate study oxygen-18 (18O) labeled KBrO3 was administered to male rats by oral gavage and tissues were analyzed for 18O deposition. Tissue enrichment of 18O was observed at 5 and 24 h post-KBr18O3 exposure with the highest enrichment occurring in the liver followed by the kidney, thyroid and testes. The kidney dose response observed was biphasic showing similar statistical increases in 18O deposition between 0.25 and 50 mg/L (equivalent dose) KBr18O3 followed by a much greater increase above 50 mg/L. These results suggest that carcinogenic doses of potassium bromate require attainment of a threshold at which oxidation of tissues occurs and that gene expression profiles may be predictive of these physiological changes in renal homeostasis.


Subject(s)
Biomarkers, Tumor/genetics , Bromates/toxicity , Carcinogens/toxicity , Gene Expression/drug effects , Neoplasms/chemically induced , Oxidative Stress/drug effects , Animals , Dose-Response Relationship, Drug , Epithelium/drug effects , Epithelium/metabolism , Epithelium/pathology , Gene Expression Profiling , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Neoplasms/metabolism , Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Oxidative Stress/genetics , RNA, Messenger/genetics , Rats , Rats, Inbred F344 , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Gland/pathology
17.
Toxicol Pathol ; 33(7): 776-83, 2005.
Article in English | MEDLINE | ID: mdl-16392172

ABSTRACT

Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the United States. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting iodide uptake, thus hindering the synthesis of thyroglobulin and reducing circulating T(4) (thyroxine). Little is known about the short-term exposure effects of mixtures of perchlorate and chlorate. The present study investigated the potential for the response to a mixture of these chemicals on the pituitary-thyroid axis in rats to be greater than that induced by the individual chemicals. Adult male F-344 rats were exposed, via their drinking water, to the nominal concentrations of 0.1, 1.0, 10 mg/L AP or 10, 100, 1000 mg/L SC and their mixtures for 7 days. Serum T(4) levels were significantly (p < 0.05) reduced in rats following exposure to the mixtures, but not after exposure to the individual chemicals. Serum T(3) (triiodothyronine) was not altered by treatment and TSH (thyroid stimulating hormone) was only increased after the high-dose chlorate treatment. Histological examination of the thyroid gland showed colloid depletion and hypertrophy of follicular epithelial cells in high-dose single chemical and all mixture-treated rats, while hyperplasia was observed only in some of the rats treated with mixtures (AP 10 + SC 100, AP 0.1 + SC 1000, and AP 10 + SC 1000 mg/L). These data suggest that short-term exposure to the mixture of AP and SC enhances the effect of either chemical alone on the pituitary-thyroid axis in rats.


Subject(s)
Chlorates/toxicity , Perchlorates/toxicity , Pituitary Gland/drug effects , Quaternary Ammonium Compounds/toxicity , Thyroid Gland/drug effects , Animals , Dose-Response Relationship, Drug , Homeostasis/drug effects , Male , Pituitary Gland/metabolism , Pituitary Gland/pathology , Rats , Rats, Inbred F344 , Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood
18.
Anal Biochem ; 334(2): 390-400, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15494147

ABSTRACT

The two major metabolic pathways of benzo[a]pyrene (BP) that lead to DNA lesions are monooxygenation that results in diolepoxides (BPDE) and one-electron oxidation that yields a BP radical cation. These pathways result in formation of stable and depurinating DNA adducts, respectively. Most in vivo animal studies with BP, however, have employed dosage/DNA adduct levels several orders of magnitude higher than the DNA damage level expected from environmentally relevant exposures. Presented are results of experiments in which A/J strain mice were intraperitoneally exposed to 50-microg/g doses of BP. It is shown that non-line-narrowed fluorescence and fluorescence line-narrowing spectroscopies possess the selectivity and sensitivity to distinguish between helix-external, base-stacked, and intercalated conformations of DNA-BPDE adducts formed in lung tissue. Concentrations measured by 32P postlabeling 2 and 3 days after intraperitoneal injection were 420-430 and 600-830 amol BPDE-type adducts per microg DNA. The external and base-stacked conformations are attributed mainly to (+)-trans-anti-BPDE-N2dG and the intercalated conformations to (+)-cis-anti adducts. A stable adduct derived from 9-OH-BP-4,5-epoxide was also detected at a concentration about a factor of 10 lower than the above concentrations. The DNA supernatants were analyzed for the presence of depurinating BP-derived adducts by capillary electrophoresis laser-induced fluorescence and high-performance liquid chromatography mass spectrometry.


Subject(s)
Benzo(a)pyrene/chemistry , DNA Adducts/analysis , DNA Adducts/chemistry , Lung/metabolism , Animals , Benzo(a)pyrene/pharmacology , Lung/drug effects , Mice , Molecular Structure , Spectrometry, Fluorescence , Temperature
19.
Chem Res Toxicol ; 17(6): 827-38, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15206904

ABSTRACT

Benzo[a]pyrene (B[a]P) is an archetypal member of the family of polycyclic aromatic hydrocarbons (PAHs) and is a widely distributed environmental pollutant. B[a]P is known to induce cancer in animals, and B[a]P-containing complex mixtures are human carcinogens. B[a]P exerts its genotoxic and carcinogenic effects through metabolic activation forming reactive intermediates that damage DNA. DNA adduction by B[a]P is a complex phenomenon that involves the formation of both stable and unstable (depurinating) adducts. One pathway by which B[a]P can mediate genotoxicity is through the enzymatic formation of B[a]P-7,8-quinone (BPQ) from B[a]P-7,8-diol by members of the aldo-keto-reductase (AKR) family. Once formed, BPQ can act as a reactive Michael acceptor that can alkylate cellular nucleophiles including DNA and peptides. Earlier studies have reported on the formation of stable and depurinating adducts from the reaction of BPQ with DNA and nucleosides, respectively. However, the syntheses and characterization of the stable adducts from these interactions have not been addressed. In this study, the reactivity of BPQ toward 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) nucleosides under physiological pH conditions is examined. The identification and characterization of six novel BPQ-nucleoside adducts obtained from the reaction of BPQ and dG or dA in a mixture of phosphate buffer and dimethylformamide are reported. The structures of these adducts were determined by ultraviolet spectroscopy, electrospray mass spectrometry, and NMR experiments including (1)H, (13)C, two-dimensional COSY, one-dimensional NOE, ROESY, HMQC, HSQC, and HMBC. The reaction of BPQ with dG afforded four unique Michael addition products: two diastereomers of 8-N(1),9-N(2)-deoxyguanosyl-8,10-dihydroxy-9,10-dihydrobenzo[a]pyren-7(8H)-one (BPQ-dG(1,2)) and two diastereomers of 10-(N(2)-deoxyguanosyl)-9,10-dihydro-9-hydroxybenzo[a]pyrene-7,8-dione (BPQ-dG(3,4)). The BPQ-dG(1,2)( )()adducts suggest a 1,6-Michael addition reaction of dG, an oxidation of the hydroquinone to the quinone, a 1,4-Michael addition of water, and an internal cyclization. The BPQ-dG(3,4)( )()adducts suggest a 1,4-Michael addition reaction of dG, an oxidation of the hydroquinone to the quinone, and a 1,6-Michael addition of water. Under similar but extended reaction conditions, the reaction of BPQ with dA produced only one diastereomeric pair of adducts identified as 8-N(6),10-N(1)-deoxyadenosyl-8,9-dihydroxy-9,10-dihydrobenzo[a]pyren-7(8H)-one (BPQ-dA(1,2)). The BPQ-dA(1,2)( )()adducts suggest a 1,4-Michael addition reaction of dA, an oxidation of the hydroquinone to the quinone, a 1,6-Michael addition of water, and an internal cyclization. As considerable efforts have been placed in documenting the genotoxic effects of BPQ, this first report of the identification and characterization of these stable adducts of BPQ formed under physiological pH conditions is expected to contribute significantly to the area of BPQ-mediated genotoxicity and carcinogenesis.


Subject(s)
Benzo(a)pyrene/analysis , Benzopyrenes/analysis , DNA Adducts/analysis , Deoxyadenosines/analysis , Deoxyguanosine/analysis , Biotransformation , Chromatography, High Pressure Liquid , Dimethylformamide , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
20.
Toxicol Sci ; 69(2): 322-31, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12377981

ABSTRACT

Cancer risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects, but this may not represent the actual biological response. A rodent model of hereditary renal cancer (Eker rat) was used to evaluate the carcinogenicity of mixtures of water disinfection by-products (DBPs). Male and female Eker rats were treated with individual DBPs or a mixture of DBPs for 4 or 10 months. Potassium bromate, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone, chloroform, and bromodichloromethane were administered in drinking water at low concentrations of 0.02, 0.005, 0.4, and 0.07 g/l, respectively, and high concentrations of 0.4, 0.07, 1.8, and 0.7 g/l, respectively. Low and high dose mixture solutions comprised all four chemicals at either the low or the high concentrations, respectively. Body weights, water consumption, and chemical concentrations in the water were measured monthly. All tissues were examined macroscopically for masses and all masses were diagnosed microscopically. Total renal lesions (adenomas and carcinomas) were quantitated microscopically in male and female rats treated for 4 or 10 months. A dose response for renal tumors was present in most treatment groups after 4 or 10 months of treatment. Treatment with the mixture produced on average no more renal, splenic, or uterine tumors than the individual compound with the greatest effect. This study suggests that the default assumption of additivity may overestimate the carcinogenic effect of chemical mixtures in drinking water.


Subject(s)
Carcinogens/toxicity , Disinfectants/toxicity , Repressor Proteins/genetics , Water Pollutants, Chemical/toxicity , Water Supply/analysis , Adenoma/chemically induced , Adenoma/pathology , Animals , Carcinoma/chemically induced , Carcinoma/pathology , Disinfection , Drinking , Female , Kidney Neoplasms/chemically induced , Kidney Neoplasms/pathology , Male , Neoplasms/chemically induced , Neoplasms/pathology , Organ Size/drug effects , Rats , Rats, Long-Evans , Sex Characteristics , Survival Analysis , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...