Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Ecol Evol ; 14(5): e11439, 2024 May.
Article in English | MEDLINE | ID: mdl-38774138

ABSTRACT

The threat to biodiversity posed by urban expansion is well researched and supported. Since the late 1990s, the field of urban ecology has been expanding along with the developed landscapes it studies. Past reviews have shown unequal publication rates in urban ecology literature for taxonomic groups and research locations. Herein, we explore differences in the publication rate of urban studies by vertebrate groups, but also expand on previous investigations by broadening the scope of the literature searched, exploring trends in subtopics within the urban wildlife literature, identifying geographic patterns of such publications, and comparing the rate at which non-native and threatened and endangered species are studied in urban settings. We used linear and segmented regression to assess publication rates and Fisher's exact tests for comparisons between groups. All vertebrate groups show an increasing proportion of urban studies through time, with urban avian studies accelerating most sharply and herpetofauna appearing to be understudied. Non-native mammals are more studied than non-native birds, and threatened and endangered herpetofauna and mammals are more likely to be studied than threatened and endangered birds in urban areas. The plurality of urban wildlife studies are found in North America, while there is a dearth of studies from Africa, Asia, and South America. Our results can help inform decisions of urban ecologists on how to better fill in knowledge gaps and bring a greater degree of equity into the field.

2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34035170

ABSTRACT

Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.


Subject(s)
Calcium-Binding Proteins/genetics , Mutation , Neural Cell Adhesion Molecules/genetics , Neurons/metabolism , Neurotransmitter Agents/metabolism , Schizophrenia/metabolism , Case-Control Studies , Cell Transdifferentiation , Cells, Cultured , Cohort Studies , Embryonic Stem Cells/cytology , Gene Expression , Guanylate Kinases/metabolism , Heterozygote , Humans , Induced Pluripotent Stem Cells/cytology
3.
Ecol Evol ; 8(14): 7206-7215, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073079

ABSTRACT

Dragonflies reside in both aquatic and terrestrial environments, depending on their life stage, necessitating the conservation of drastically different habitats; however, little is understood about how nymph and adult dragonflies function as metapopulations within connected habitat. We used genetic techniques to examine nymphs and adults within a single metapopulation both spatially and temporally to better understand metapopulation structure and the processes that might influence said structure. We sampled 97 nymphs and 149 adult Sympetrum obtrusum from eight locations, four aquatic, and four terrestrial, at the Pierce Cedar Creek Institute in Southwest Michigan over two summers. We performed AFLP genetic analysis and used the Bayesian analysis program STRUCTURE to detect genetic clusters from sampled individuals. STRUCTURE detected k = u4 populations, in which nymphs and adults from the same locations collected in different years did not necessarily fall into the same clusters. We also evaluated grouping using the statistical clustering analyses NMDS and MRPP. The results of these confirmed findings from STRUCTURE and emphasized differences between adults collected in 2012 and all other generations. These results suggest that both dispersal and a temporal cycle of emergence of nymphs from unique clusters every other year could be influential in structuring dragonfly populations, although our methods were not able to fully distinguish the influences of either force. This study provides a better understanding of local dragonfly metapopulation structure and provides a starting point for future studies to investigate the spatial and temporal mechanisms controlling metapopulation structure. The results of the study should prove informative for managers working to preserve genetic diversity in connected dragonfly metapopulations, especially in the face of increasing anthropogenic landscape changes.

4.
Ecol Evol ; 7(22): 9613-9623, 2017 11.
Article in English | MEDLINE | ID: mdl-29187994

ABSTRACT

Population genetic analyses of species inhabiting fragmented landscapes are essential tools for conservation. Occasionally, analyses of fragmented populations find no evidence of isolation, even though a barrier to dispersal is apparent. In some cases, not enough time may have passed to observe divergence due to genetic drift, a problem particularly relevant for long-lived species with overlapping generations. Failing to consider this quality during population structure analyses could result in incorrect conclusions about the impact of fragmentation on the species. We designed a model to explore how lifespan and population size influence perceived population structure of isolated populations over time. This iterative model tracked how simulated populations of variable lifespan and population size were affected by drift alone, using a freshwater mussel, Quadrula quadrula (mapleleaf), as a model system. In addition to exhibiting dramatic lifespan variability among species, mussels are also highly imperiled and exhibit fragmentation by dams throughout the range of many species. Results indicated that, unless population size was small (<50 individuals) or lifespan short (<22 years), observing genetic divergence among populations was unlikely. Even if wild populations are isolated, observing population structure in long-lived mussels from modern damming practices is unlikely because it takes longer for population structure to develop in these species than most North American dams have existed. Larger population sizes and longer lifespans increase the time needed for significant divergence to occur. This study helps illuminate the factors that influence genetic responses by populations to isolation and provides a useful model for conservation-oriented research.

5.
PeerJ ; 5: e3584, 2017.
Article in English | MEDLINE | ID: mdl-28729957

ABSTRACT

Wildlife conservation and management approaches typically focus on demographic measurements to assess population viability over both short and long periods. However, genetic diversity is an important predictor of long term population vitality. We investigated the pattern of change in genetic diversity in a large and likely isolated moose (Alces alces) population on Isle Royale (Lake Superior) from 1960-2005. We characterized samples, partitioned into five different 5-year periods, using nine microsatellite loci and a portion of the mtDNA control region. We also simulated the moose population to generate a theoretical backdrop of genetic diversity change. In the empirical data, we found that the number of alleles was consistently low and that observed heterozygosity notably declined from 1960 to 2005 (p = 0.08, R2 = 0.70). Furthermore, inbreeding coefficients approximately doubled from 0.08 in 1960-65 to 0.16 in 2000-05. Finally, we found that the empirical rate of observed heterozygosity decline was faster than the rate of observed heterozygosity loss in our simulations. Combined, these data suggest that genetic drift and inbreeding occurred in the Isle Royale moose populations over the study period, leading to significant losses in heterozygosity. Although inbreeding can be mitigated by migration, we found no evidence to support the occurrence of recent migrants into the population using analysis of our mtDNA haplotypes nor microsatellite data. Therefore, the Isle Royale moose population illustrates that even large populations are subjected to inbreeding in the absence of migration.

6.
Evol Appl ; 9(10): 1271-1284, 2016 12.
Article in English | MEDLINE | ID: mdl-27877205

ABSTRACT

Small and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (Taxidea taxus), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations. Our results suggest that gene flow plays a prominent role in shaping MHC polymorphism across large spatial scales, while the interplay between gene flow and selection was stronger towards the northern peripheries. The similarity of MHC alleles within subspecies relative to their neutral genetic differentiation suggests that adaptive divergence among subspecies can be maintained despite ongoing gene flow along subspecies boundaries. Neutral genetic diversity was low in small relative to large populations, but MHC diversity within individuals was high in small populations. Despite reduced neutral genetic variation, small and isolated populations harbour functional variation that likely contribute to the species evolutionary potential at the northern range. Our findings suggest that conservation approaches should focus on managing adaptive variation across the species range rather than protecting subspecies per se.

7.
Ecol Evol ; 6(12): 3991-4003, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27516858

ABSTRACT

Genetic diversity is fundamental to maintaining the long-term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.

8.
Stem Cells Transl Med ; 5(2): 164-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26683871

ABSTRACT

Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-ß type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic screens are discussed, demonstrating the value of this biologically relevant and reproducible technology. In addition, this assay system was able to identify novel and potent inducers of differentiation and proliferation of induced pluripotent stem cell-derived cardiac progenitor cells.


Subject(s)
Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Protein Kinase Inhibitors/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Biomarkers/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Gene Expression , High-Throughput Screening Assays , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phenotype , Plasmids/chemistry , Plasmids/metabolism , Primary Cell Culture , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-kit/deficiency , Proto-Oncogene Proteins c-kit/genetics , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Small Molecule Libraries/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
PLoS One ; 9(9): e108051, 2014.
Article in English | MEDLINE | ID: mdl-25255322

ABSTRACT

Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the in vitro data with human myocardial biopsies detected overlapping expression changes between the in vitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.


Subject(s)
Cardiomegaly/pathology , Gene Expression Profiling , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
10.
Mol Phylogenet Evol ; 76: 134-43, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24662681

ABSTRACT

The subspecies concept influences multiple aspects of biology and management. The 'molecular revolution' altered traditional methods (morphological traits) of subspecies classification by applying genetic analyses resulting in alternative or contradictory classifications. We evaluated recent reptile literature for bias in the recommendations regarding subspecies status when genetic data were included. Reviewing characteristics of the study, genetic variables, genetic distance values and noting the species concepts, we found that subspecies were more likely elevated to species when using genetic analysis. However, there was no predictive relationship between variables used and taxonomic recommendation. There was a significant difference between the median genetic distance values when researchers elevated or collapsed a subspecies. Our review found nine different concepts of species used when recommending taxonomic change, and studies incorporating multiple species concepts were more likely to recommend a taxonomic change. Since using genetic techniques significantly alter reptile taxonomy there is a need to establish a standard method to determine the species-subspecies boundary in order to effectively use the subspecies classification for research and conservation purposes.


Subject(s)
Classification/methods , Genetic Speciation , Reptiles/classification , Reptiles/genetics , Animals , Phylogeny , Sequence Analysis, DNA , Species Specificity
11.
PLoS One ; 8(10): e77125, 2013.
Article in English | MEDLINE | ID: mdl-24130843

ABSTRACT

Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies.


Subject(s)
Animal Migration , Gene Flow , Seals, Earless/genetics , Seals, Earless/physiology , Telemetry , Animals , Arctic Regions , Breeding , Cell Nucleus/genetics , Female , Genetic Loci/genetics , Genetic Variation , Geography , Male , Mitochondria/genetics
12.
Am J Physiol Heart Circ Physiol ; 301(5): H2006-17, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21890694

ABSTRACT

Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes; however, the electrophysiological properties of hiPSC-derived cardiomyocytes have yet to be fully characterized. We performed detailed electrophysiological characterization of highly pure hiPSC-derived cardiomyocytes. Action potentials (APs) were recorded from spontaneously beating cardiomyocytes using a perforated patch method and had atrial-, nodal-, and ventricular-like properties. Ventricular-like APs were more common and had maximum diastolic potentials close to those of human cardiac myocytes, AP durations were within the range of the normal human electrocardiographic QT interval, and APs showed expected sensitivity to multiple drugs (tetrodotoxin, nifedipine, and E4031). Early afterdepolarizations (EADs) were induced with E4031 and were bradycardia dependent, and EAD peak voltage varied inversely with the EAD take-off potential. Gating properties of seven ionic currents were studied including sodium (I(Na)), L-type calcium (I(Ca)), hyperpolarization-activated pacemaker (I(f)), transient outward potassium (I(to)), inward rectifier potassium (I(K1)), and the rapidly and slowly activating components of delayed rectifier potassium (I(Kr) and I(Ks), respectively) current. The high purity and large cell numbers also enabled automated patch-clamp analysis. We conclude that these hiPSC-derived cardiomyocytes have ionic currents and channel gating properties underlying their APs and EADs that are quantitatively similar to those reported for human cardiac myocytes. These hiPSC-derived cardiomyocytes have the added advantage that they can be used in high-throughput assays, and they have the potential to impact multiple areas of cardiovascular research and therapeutic applications.


Subject(s)
Cell Differentiation , Excitation Contraction Coupling , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Action Potentials , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Cell Line , Excitation Contraction Coupling/drug effects , Flow Cytometry , Fluorescent Antibody Technique , Heart Rate , Humans , Induced Pluripotent Stem Cells/drug effects , Ion Channel Gating , Ion Transport , Kinetics , Membrane Transport Modulators/pharmacology , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channels/metabolism , Sodium/metabolism , Sodium Channels/metabolism
13.
J Cardiovasc Transl Res ; 4(1): 66-72, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21061105

ABSTRACT

Moving from the bench to the bedside is an expensive and arduous journey with a high risk of failure. One roadblock on the path of translational medicine is the paucity of predictive in vitro models available during preclinical drug development. The ability of human embryonic stem (ES) and induced pluripotent stem (iPS) cells to generate virtually any tissue of the body, in vitro, makes these cells an obvious choice for use in drug discovery and translational medicine. Technological advancements in the production of stem cells and their differentiation into relevant cell types, such as cardiomyocytes, has permitted the utility of these cells in the translational medicine setting. In particular, the derivation and differentiation of patient-specific iPS cells will facilitate an understanding of basic disease etiology, enable better drug efficacy and safety screens, and ultimately lead to personalized patient therapies. This review will focus on recent advancements in the derivation and differentiation of human ES and iPS cells into cardiomyocytes and their uses in safety testing and modeling human disease.


Subject(s)
Cardiovascular Diseases/surgery , Embryonic Stem Cells/transplantation , Induced Pluripotent Stem Cells/transplantation , Myocytes, Cardiac/transplantation , Stem Cell Transplantation , Translational Research, Biomedical , Animals , Cardiovascular Diseases/pathology , Cell Differentiation , Cell Proliferation , Humans , Stem Cell Transplantation/adverse effects , Treatment Outcome
14.
J Exp Med ; 205(5): 1087-97, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18426985

ABSTRACT

Adoptive transfer of in vivo-primed CD8(+) T cells or in vitro-generated effector memory CD8(+) T (T(EFF)) cells restores airway hyperresponsiveness (AHR) and airway inflammation in CD8-deficient (CD8(-/-)) mice. Examining transcription levels, there was a strong induction of Notch1 in T(EFF) cells compared with central memory CD8(+) T cells. Treatment of T(EFF) cells with a gamma-secretase inhibitor (GSI) strongly inhibited Notch signaling in these cells, and after adoptive transfer, GSI-treated T(EFF) cells failed to restore AHR and airway inflammation in sensitized and challenged recipient CD8(-/-) mice, or to enhance these responses in recipient wild-type (WT) mice. These effects of GSI were also associated with increased expression of the Notch ligand Delta1 in T(EFF) cells. Treatment of sensitized and challenged WT mice with Delta1-Fc resulted in decreased AHR and airway inflammation accompanied by higher levels of interferon gamma in bronchoalveolar lavage fluid. These results demonstrate a role for Notch in skewing the T cell response from a T helper (Th)2 to a Th1 phenotype as a consequence of the inhibition of Notch receptor activation and the up-regulation of the Notch ligand Delta1. These data are the first to show a functional role for Notch in the challenge phase of CD8(+) T cell-mediated development of AHR and airway inflammation, and identify Delta1 as an important regulator of allergic airway inflammation.


Subject(s)
Bronchial Hyperreactivity/physiopathology , CD8-Positive T-Lymphocytes/immunology , Cytokines/physiology , Immunologic Memory , Inflammation/physiopathology , Receptors, Notch/physiology , Adoptive Transfer , Animals , Bronchial Hyperreactivity/immunology , Cytokines/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Ovalbumin/immunology , RNA/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
15.
Nat Med ; 10(8): 865-9, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15258576

ABSTRACT

Allergic asthma is a complex syndrome characterized by airway obstruction, airway inflammation and airway hyper-responsiveness (AHR). Using a mouse model of allergen-induced AHR, we previously demonstrated that CD8-deficient mice develop significantly lower AHR, eosinophilic inflammation and interleukin (IL)-13 levels in bronchoalveolar lavage fluid compared with wild-type mice. These responses were restored by adoptive transfer of antigen-primed CD8(+) T cells. Previously, two distinct populations of antigen-experienced CD8(+) T cells, termed effector (T(EFF)) and central memory (T(CM)) cells, have been described. After adoptive transfer into CD8-deficient mice, T(EFF), but not T(CM), cells restored AHR, eosinophilic inflammation and IL-13 levels. T(EFF), but not T(CM), cells accumulated in the lungs, and intracellular cytokine staining showed that the transferred T(EFF) cells were a source of IL-13. These data suggest an important role for effector CD8(+) T cells in the development of AHR and airway inflammation, which may be associated with their Tc2-type cytokine production and their capacity to migrate into the lung.


Subject(s)
Allergens/immunology , Bronchial Hyperreactivity/immunology , Bronchitis/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology , Adoptive Transfer , Alum Compounds , Analysis of Variance , Animals , Bronchial Hyperreactivity/pathology , Bronchitis/physiopathology , Bronchoalveolar Lavage Fluid/immunology , CD8 Antigens/immunology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Interleukin-13/immunology , Lung/immunology , Lung/pathology , Methacholine Chloride , Mice , Mice, Mutant Strains , Ovalbumin
16.
Proc Natl Acad Sci U S A ; 101(20): 7681-6, 2004 May 18.
Article in English | MEDLINE | ID: mdl-15136728

ABSTRACT

Apoptosis in activated T cells in vivo requires the proapoptotic Bcl-2 family member Bim. We show here that, despite its ability to bind LC8, a component of the microtubule dynein motor complex, most of the Bim in both healthy and apoptotic T cells is associated with mitochondria, not microtubules. In healthy resting T cells Bim is bound to the antiapoptotic proteins Bcl-2 and Bcl-x(L). In activated T cells, levels of Bcl-2 fall, and Bim is associated more with Bcl-x(L) and less with Bcl-2. Our results indicate that, in T cells, Bim function is regulated by interaction with Bcl-2 family members on mitochondria rather than by sequestration to the microtubules.


Subject(s)
Apoptosis/physiology , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , T-Lymphocytes/metabolism , Animals , Cell Membrane/metabolism , Fluorescent Antibody Technique , Mice , Mutation , Proto-Oncogene Proteins c-bcl-2/genetics
17.
Nat Immunol ; 4(10): 974-81, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12949532

ABSTRACT

Studies in both humans and rodents indicate that CD8+ T cells may be important in allergic inflammation. However, neither the mechanisms that mediate CD8+ T cell recruitment to inflamed tissues nor the relative participation of effector and central memory CD8+ T cells is known. Here we report that activated mast cells induced chemotaxis of effector, but not central memory, CD8+ T cells through production of leukotriene B4 (LTB4). These studies indicate that LTB4 production by activated peripheral leukocytes could be important for the recruitment of effector CD8+ T cells to sites of inflammation.


Subject(s)
Chemotaxis, Leukocyte/immunology , Leukotriene B4/immunology , Mast Cells/immunology , Receptors, Leukotriene B4/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Base Sequence , Female , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Leukotriene B4/biosynthesis , Male , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/immunology , T-Lymphocyte Subsets/immunology
18.
Immunity ; 17(5): 605-15, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12433367

ABSTRACT

An examination of differences in gene expression between memory and naive phenotype T cells revealed elevated levels of mRNA for several chemokines, especially RANTES, in memory phenotype T cells. Although RANTES mRNA is spliced and cytoplasmic, these cells do not contain or secrete significant amounts of RANTES protein without TCR stimulation. This secretion is independent of transcription, but requires translation. In vivo, CD8+ memory T cells proliferate continuously and slowly in response to IL-15; however, IL-15 does not stimulate RANTES secretion. These results show that memory phenotype CD8+ T cells use preexisting mRNA to produce and secrete RANTES rapidly following TCR stimulation. Such storage of preformed mRNAs for important inflammatory mediators may contribute to the speed of secondary immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chemokine CCL5/immunology , RNA Processing, Post-Transcriptional/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Chemokine CCL5/biosynthesis , Chemokine CCL5/genetics , Female , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Antigen, T-Cell/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...