Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Fuels ; 34(4): 4958-4966, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32327881

ABSTRACT

Presented here is an overview of non-volatile particulate matter (nvPM) emissions, i.e. "soot" as assessed by TEM analyses of samples collected after the exhaust of a J-85 turbojet fueled with Jet-A as well as with blends of Jet-A and Camelina biofuel. A unifying explanation is provided to illustrate the combustion dynamics of biofuel and Jet-A fuel. The variation of primary particle size, aggregate size and nanostructure are analyzed as a function of biofuel blend across a range of engine thrust levels. The postulate is based on where fuels start along the soot formation pathway. Increasing biofuel content lowers aromatic concentration while placing increasing dependence upon fuel pyrolysis reactions to form the requisite concentration of aromatics for particle inception and growth. The required "kinetic" time for pyrolysis reactions to produce benzene and multi-ring PAHs allows increased fuel-air mixing by turbulence, diluting the fuel-rich soot-forming regions, effectively lowering their equivalence ratio. With a lower precursor concentration, particle inception is slowed, the resulting concentration of primary particles is lowered and smaller aggregates were measured. The lower equivalence ratio also results in smaller primary particles because of the lower concentration of growth species.

2.
Ann Work Expo Health ; 61(6): 737-747, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28609786

ABSTRACT

Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drazyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material.


Subject(s)
Air Filters/standards , Air Pollutants, Occupational , Filtration/methods , Inhalation Exposure/analysis , Masks/standards , Materials Testing/methods , Respiratory Protective Devices , Vehicle Emissions/analysis , Aerosols/analysis , Filtration/standards , Humans , National Institute for Occupational Safety and Health, U.S. , Particulate Matter/analysis , United States
3.
Environ Sci Technol ; 50(4): 2018-26, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26757000

ABSTRACT

Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.


Subject(s)
Gasoline , Motor Vehicles , Natural Gas , Vehicle Emissions/analysis , Carbon Dioxide/analysis , Methane/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis
4.
Environ Sci Technol ; 47(9): 4521-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23550802

ABSTRACT

The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.


Subject(s)
Filtration/methods , Nitrogen Oxides/chemistry , Aerosols , Catalysis , Oxidation-Reduction , Particle Size , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...