Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
PLoS One ; 19(4): e0299267, 2024.
Article in English | MEDLINE | ID: mdl-38568950

ABSTRACT

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Subject(s)
Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Precision Medicine , Genetic Heterogeneity , Magnetic Resonance Imaging/methods , Algorithms , Machine Learning , Support Vector Machine , ErbB Receptors/genetics
2.
Res Sq ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585839

ABSTRACT

Many cancers, including glioblastoma (GBM), have a male-biased sex difference in incidence and outcome. The underlying reasons for this sex bias are unclear but likely involve differences in tumor cell state and immune response. This effect is further amplified by sex hormones, including androgens, which have been shown to inhibit anti-tumor T cell immunity. Here, we show that androgens drive anti-tumor immunity in brain tumors, in contrast to its effect in other tumor types. Upon castration, tumor growth was accelerated with attenuated T cell function in GBM and brain tumor models, but the opposite was observed when tumors were located outside the brain. Activity of the hypothalamus-pituitary-adrenal gland (HPA) axis was increased in castrated mice, particularly in those with brain tumors. Blockade of glucocorticoid receptors reversed the accelerated tumor growth in castrated mice, indicating that the effect of castration was mediated by elevated glucocorticoid signaling. Furthermore, this mechanism was not GBM specific, but brain specific, as hyperactivation of the HPA axis was observed with intracranial implantation of non-GBM tumors in the brain. Together, our findings establish that brain tumors drive distinct endocrine-mediated mechanisms in the androgen-deprived setting and highlight the importance of organ-specific effects on anti-tumor immunity.

3.
Res Sq ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585856

ABSTRACT

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of glioblastoma (GBM). This heterogeneity is further exacerbated during GBM recurrence, as treatment-induced reactive changes produce additional intratumoral heterogeneity that is ambiguous to differentiate on clinical imaging. There is an urgent need to develop non-invasive approaches to map the heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We propose to predictively fuse Magnetic Resonance Imaging (MRI) with the underlying intratumoral heterogeneity in recurrent GBM using machine learning (ML) by leveraging image-localized biopsies with their associated locoregional MRI features. To this end, we develop BioNet, a biologically-informed neural network model, to predict regional distributions of three tissue-specific gene modules: proliferating tumor, reactive/inflammatory cells, and infiltrated brain tissue. BioNet offers valuable insights into the integration of multiple implicit and qualitative biological domain knowledge, which are challenging to describe in mathematical formulations. BioNet performs significantly better than a range of existing methods on cross-validation and blind test datasets. Voxel-level prediction maps of the gene modules by BioNet help reveal intratumoral heterogeneity, which can improve surgical targeting of confirmatory biopsies and evaluation of neuro-oncological treatment effectiveness. The non-invasive nature of the approach can potentially facilitate regular monitoring of the gene modules over time, and making timely therapeutic adjustment. These results also highlight the emerging role of ML in precision medicine.

4.
Mayo Clin Proc ; 99(2): 229-240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309935

ABSTRACT

OBJECTIVE: To establish a neurologic disorder-driven biospecimen repository to bridge the operating room with the basic science laboratory and to generate a feedback cycle of increased institutional and national collaborations, federal funding, and human clinical trials. METHODS: Patients were prospectively enrolled from April 2017 to July 2022. Tissue, blood, cerebrospinal fluid, bone marrow aspirate, and adipose tissue were collected whenever surgically safe. Detailed clinical, imaging, and surgical information was collected. Neoplastic and nonneoplastic samples were categorized and diagnosed in accordance with current World Health Organization classifications and current standard practices for surgical pathology at the time of surgery. RESULTS: A total of 11,700 different specimens from 813 unique patients have been collected, with 14.2% and 8.5% of patients representing ethnic and racial minorities, respectively. These include samples from a total of 463 unique patients with a primary central nervous system tumor, 88 with metastasis to the central nervous system, and 262 with nonneoplastic diagnoses. Cerebrospinal fluid and adipose tissue dedicated banks with samples from 130 and 16 unique patients, respectively, have also been established. Translational efforts have led to 42 new active basic research projects; 4 completed and 6 active National Institutes of Health-funded projects; and 2 investigational new drug and 5 potential Food and Drug Administration-approved phase 0/1 human clinical trials, including 2 investigator initiated and 3 industry sponsored. CONCLUSION: We established a comprehensive biobank with detailed notation with broad potential that has helped us to transform our practice of research and patient care and allowed us to grow in research and clinical trials in addition to providing a source of tissue for new discoveries.


Subject(s)
Biological Specimen Banks , Operating Rooms , Humans
5.
Neurooncol Adv ; 6(1): vdad172, 2024.
Article in English | MEDLINE | ID: mdl-38221978

ABSTRACT

Background: Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods. Methods: An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images. Results: There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, P = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, P = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD. Conclusions: Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.

6.
PLoS One ; 18(12): e0287767, 2023.
Article in English | MEDLINE | ID: mdl-38117803

ABSTRACT

Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as other tissue analysis techniques. To date, these data (made available through a public portal) have been used to generate, test, and validate predictive regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma.


Subject(s)
Brain Neoplasms , Glioma , Humans , Diffusion Tensor Imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Magnetic Resonance Imaging/methods , Biopsy , Brain/pathology , Brain Mapping
7.
Front Oncol ; 13: 1185738, 2023.
Article in English | MEDLINE | ID: mdl-37849813

ABSTRACT

Imaging is central to the clinical surveillance of brain tumors yet it provides limited insight into a tumor's underlying biology. Machine learning and other mathematical modeling approaches can leverage paired magnetic resonance images and image-localized tissue samples to predict almost any characteristic of a tumor. Image-based modeling takes advantage of the spatial resolution of routine clinical scans and can be applied to measure biological differences within a tumor, changes over time, as well as the variance between patients. This approach is non-invasive and circumvents the intrinsic challenges of inter- and intratumoral heterogeneity that have historically hindered the complete assessment of tumor biology and treatment responsiveness. It can also reveal tumor characteristics that may guide both surgical and medical decision-making in real-time. Here we describe a general framework for the acquisition of image-localized biopsies and the construction of spatiotemporal radiomics models, as well as case examples of how this approach may be used to address clinically relevant questions.

8.
medRxiv ; 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37503239

ABSTRACT

BACKGROUND: Glioblastoma is an extraordinarily heterogeneous tumor, yet the current treatment paradigm is a "one size fits all" approach. Hundreds of glioblastoma clinical trials have been deemed failures because they did not extend median survival, but these cohorts are comprised of patients with diverse tumors. Current methods of assessing treatment efficacy fail to fully account for this heterogeneity. METHODS: Using an image-based modeling approach, we predicted T-cell abundance from serial MRIs of patients enrolled in the dendritic cell (DC) vaccine clinical trial. T-cell predictions were quantified in both the contrast-enhancing and non-enhancing regions of the imageable tumor, and changes over time were assessed. RESULTS: A subset of patients in a DC vaccine clinical trial, who had previously gone undetected, were identified as treatment responsive and benefited from prolonged survival. A mere two months after initial vaccine administration, responsive patients had a decrease in model-predicted T-cells within the contrast-enhancing region, with a simultaneous increase in the T2/FLAIR region. CONCLUSIONS: In a field that has yet to see breakthrough therapies, these results highlight the value of machine learning in enhancing clinical trial assessment, improving our ability to prospectively prognosticate patient outcomes, and advancing the pursuit towards individualized medicine.

9.
Trends Cancer ; 9(3): 185-187, 2023 03.
Article in English | MEDLINE | ID: mdl-36635119

ABSTRACT

The dogma that cancer is a genetic disease is being questioned. Recent findings suggest that genetic/nongenetic duality is necessary for cancer progression. A think tank organized by the Shraman Foundation's Institute for Theoretical Biology compiled key challenges and opportunities that theoreticians, experimentalists, and clinicians can explore from a systems biology perspective to provide a better understanding of the disease as well as help discover new treatment options and therapeutic strategies.


Subject(s)
Neoplasms , Systems Biology , Humans , Neoplasms/genetics
10.
medRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168377

ABSTRACT

Magnetic resonance imaging (MRI) measurements are routinely collected during the treatment of high-grade gliomas (HGGs) to characterize tumor boundaries and guide surgical tumor resection. Using spatially matched MRI and transcriptomics we discovered HGG tumor biology captured by MRI measurements. We strategically overlaid the spatially matched omics characterizations onto a pre-existing transcriptional map of glioblastoma multiforme (GBM) to enhance the robustness of our analyses. We discovered that T1+C measurements, designed to capture vasculature and blood brain barrier (BBB) breakdown and subsequent contrast extravasation, also indirectly reveal immune cell infiltration. The disruption of the vasculature and BBB within the tumor creates a permissive infiltrative environment that enables the transmigration of anti-inflammatory macrophages into tumors. These relationships were validated through histology and enrichment of genes associated with immune cell transmigration and proliferation. Additionally, T2-weighted (T2W) and mean diffusivity (MD) measurements were associated with angiogenesis and validated using histology and enrichment of genes involved in neovascularization. Furthermore, we establish an unbiased approach for identifying additional linkages between MRI measurements and tumor biology in future studies, particularly with the integration of novel MRI techniques. Lastly, we illustrated how noninvasive MRI can be used to map HGG biology spatially across a tumor, and this provides a platform to develop diagnostics, prognostics, or treatment efficacy biomarkers to improve patient outcomes.

11.
Breast Cancer Res Treat ; 194(1): 79-89, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35501423

ABSTRACT

PURPOSE: Quantify in vivo biomechanical tissue properties in various breast densities and in average risk and high-risk women using Magnetic Resonance Imaging (MRI)/MRE and examine the association between breast biomechanical properties and cancer risk based on patient demographics and clinical data. METHODS: Patients with average risk or high-risk of breast cancer underwent 3.0 T breast MR imaging and elastography. Breast parenchymal enhancement (BPE), density (from most recent mammogram), stiffness, elasticity, and viscosity were recorded. Within each breast density group (non-dense versus dense), stiffness, elasticity, and viscosity were compared across risk groups (average versus high). Separately for stiffness, elasticity, and viscosity, a multivariable logistic regression model was used to evaluate whether the MRE parameter predicted risk status after controlling for clinical factors. RESULTS: 50 average risk and 86 high-risk patients were included. Risk groups were similar in age, density, and menopausal status. Among patients with dense breasts, mean stiffness, elasticity, and viscosity were significantly higher in high-risk patients (N = 55) compared to average risk patients (N = 34; all p < 0.001). Stiffness remained a significant predictor of risk status (OR = 4.26, 95% CI [1.96, 9.25]) even after controlling for breast density, BPE, age, and menopausal status. Similar results were seen for elasticity and viscosity. CONCLUSION: A structurally based, quantitative biomarker of tissue stiffness obtained from MRE is associated with differences in breast cancer risk in dense breasts. Tissue stiffness could provide a novel prognostic marker to help identify high-risk women with dense breasts who would benefit from increased surveillance and/or risk reduction measures.


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Breast/diagnostic imaging , Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Elasticity Imaging Techniques/methods , Female , Humans , Magnetic Resonance Imaging
12.
Front Radiol ; 2: 809373, 2022.
Article in English | MEDLINE | ID: mdl-37492687

ABSTRACT

In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.

13.
Front Neuroimaging ; 1: 832512, 2022.
Article in English | MEDLINE | ID: mdl-37555156

ABSTRACT

Automatic brain tumor segmentation is particularly challenging on magnetic resonance imaging (MRI) with marked pathologies, such as brain tumors, which usually cause large displacement, abnormal appearance, and deformation of brain tissue. Despite an abundance of previous literature on learning-based methodologies for MRI segmentation, few works have focused on tackling MRI skull stripping of brain tumor patient data. This gap in literature can be associated with the lack of publicly available data (due to concerns about patient identification) and the labor-intensive nature of generating ground truth labels for model training. In this retrospective study, we assessed the performance of Dense-Vnet in skull stripping brain tumor patient MRI trained on our large multi-institutional brain tumor patient dataset. Our data included pretreatment MRI of 668 patients from our in-house institutional review board-approved multi-institutional brain tumor repository. Because of the absence of ground truth, we used imperfect automatically generated training labels using SPM12 software. We trained the network using common MRI sequences in oncology: T1-weighted with gadolinium contrast, T2-weighted fluid-attenuated inversion recovery, or both. We measured model performance against 30 independent brain tumor test cases with available manual brain masks. All images were harmonized for voxel spacing and volumetric dimensions before model training. Model training was performed using the modularly structured deep learning platform NiftyNet that is tailored toward simplifying medical image analysis. Our proposed approach showed the success of a weakly supervised deep learning approach in MRI brain extraction even in the presence of pathology. Our best model achieved an average Dice score, sensitivity, and specificity of, respectively, 94.5, 96.4, and 98.5% on the multi-institutional independent brain tumor test set. To further contextualize our results within existing literature on healthy brain segmentation, we tested the model against healthy subjects from the benchmark LBPA40 dataset. For this dataset, the model achieved an average Dice score, sensitivity, and specificity of 96.2, 96.6, and 99.2%, which are, although comparable to other publications, slightly lower than the performance of models trained on healthy patients. We associate this drop in performance with the use of brain tumor data for model training and its influence on brain appearance.

14.
IEEE Trans Autom Sci Eng ; 19(3): 2203-2215, 2022 Jul.
Article in English | MEDLINE | ID: mdl-37700873

ABSTRACT

The automated capability of generating spatial prediction for a variable of interest is desirable in various science and engineering domains. Take Precision Medicine of cancer as an example, in which the goal is to match patients with treatments based on molecular markers identified in each patient's tumor. A substantial challenge, however, is that the molecular markers can vary significantly at different spatial locations of a tumor. If this spatial distribution could be predicted, the precision of cancer treatment could be greatly improved by adapting treatment to the spatial molecular heterogeneity. This is a challenging task because no technology is available to measure the molecular markers at each spatial location within a tumor. Biopsy samples provide direct measurement, but they are scarce/local. Imaging, such as MRI, is global, but it only provides proxy/indirect measurement. Also available are mechanistic models or domain knowledge, which are often approximate or incomplete. This paper proposes a novel machine learning framework to fuse the three sources of data/information to generate spatial prediction, namely the knowledge-infused global-local data fusion (KGL) model. A novel mathematical formulation is proposed and solved with theoretical study. We present a real-data application of predicting the spatial distribution of Tumor Cell Density (TCD)-an important molecular marker for brain cancer. A total of 82 biopsy samples were acquired from 18 patients with glioblastoma, together with 6 MRI contrast images from each patient and biological knowledge encoded by a PDE simulator-based mechanistic model called Proliferation-Invasion (PI). KGL achieved the highest prediction accuracy and minimum prediction uncertainty compared with a variety of competing methods. The result has important implications for providing individualized, spatially-optimized treatment for each patient.

15.
J Neurosurg ; 136(6): 1567-1575, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34715662

ABSTRACT

OBJECTIVE: Recent studies have proposed resection of the T2 FLAIR hyperintensity beyond the T1 contrast enhancement (supramarginal resection [SMR]) for IDH-wild-type glioblastoma (GBM) to further improve patients' overall survival (OS). GBMs have significant variability in tumor cell density, distribution, and infiltration. Advanced mathematical models based on patient-specific radiographic features have provided new insights into GBM growth kinetics on two important parameters of tumor aggressiveness: proliferation rate (ρ) and diffusion rate (D). The aim of this study was to investigate OS of patients with IDH-wild-type GBM who underwent SMR based on a mathematical model of cell distribution and infiltration profile (tumor invasiveness profile). METHODS: Volumetric measurements were obtained from the selected regions of interest from pre- and postoperative MRI studies of included patients. The tumor invasiveness profile (proliferation/diffusion [ρ/D] ratio) was calculated using the following formula: ρ/D ratio = (4π/3)2/3 × (6.106/[VT21/1 - VT11/1])2, where VT2 and VT1 are the preoperative FLAIR and contrast-enhancing volumes, respectively. Patients were split into subgroups based on their tumor invasiveness profiles. In this analysis, tumors were classified as nodular, moderately diffuse, or highly diffuse. RESULTS: A total of 101 patients were included. Tumors were classified as nodular (n = 34), moderately diffuse (n = 34), and highly diffuse (n = 33). On multivariate analysis, increasing SMR had a significant positive correlation with OS for moderately and highly diffuse tumors (HR 0.99, 95% CI 0.98-0.99; p = 0.02; and HR 0.98, 95% CI 0.96-0.99; p = 0.04, respectively). On threshold analysis, OS benefit was seen with SMR from 10% to 29%, 10% to 59%, and 30% to 90%, for nodular, moderately diffuse, and highly diffuse, respectively. CONCLUSIONS: The impact of SMR on OS for patients with IDH-wild-type GBM is influenced by the degree of tumor invasiveness. The authors' results show that increasing SMR is associated with increased OS in patients with moderate and highly diffuse IDH-wild-type GBMs. When grouping SMR into 10% intervals, this benefit was seen for all tumor subgroups, although for nodular tumors, the maximum beneficial SMR percentage was considerably lower than in moderate and highly diffuse tumors.

16.
Sci Rep ; 11(1): 23202, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853344

ABSTRACT

Lacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, a morphological measure of the complexity of pixel arrangement, have shown relationships with outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM), a very aggressive primary brain tumor, has not been fully explored. In this project, we computed lacunarity and fractal dimension values for GBM-induced abnormalities on clinically standard magnetic resonance imaging (MRI). In our patient cohort (n = 402), we connect these morphological metrics calculated on pretreatment MRI with the survival of patients with GBM. We calculated lacunarity and fractal dimension on necrotic regions (n = 390), all abnormalities present on T1Gd MRI (n = 402), and abnormalities present on T2/FLAIR MRI (n = 257). We also explored the relationship between these metrics and age at diagnosis, as well as abnormality volume. We found statistically significant relationships to outcome for all three imaging regions that we tested, with the shape of T2/FLAIR abnormalities that are typically associated with edema showing the strongest relationship with overall survival. This link between morphological and survival metrics could be driven by underlying biological phenomena, tumor location or microenvironmental factors that should be further explored.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Male , Prognosis , Proportional Hazards Models , Retrospective Studies
18.
Sci Rep ; 11(1): 3932, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594116

ABSTRACT

Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.


Subject(s)
Genes, erbB-1 , Glioblastoma/diagnostic imaging , Imaging Genomics , Machine Learning , Patient-Specific Modeling , Gene Amplification , Glioblastoma/genetics , Humans , Magnetic Resonance Imaging , Uncertainty
19.
Trends Cancer ; 7(1): 3-9, 2021 01.
Article in English | MEDLINE | ID: mdl-33168416

ABSTRACT

Physical sciences are often overlooked in the field of cancer research. The Physical Sciences in Oncology Initiative was launched to integrate physics, mathematics, chemistry, and engineering with cancer research and clinical oncology through education, outreach, and collaboration. Here, we provide a framework for education and outreach in emerging transdisciplinary fields.


Subject(s)
Intersectoral Collaboration , Medical Oncology/education , Natural Science Disciplines/education , Neoplasms/therapy , Oncologists/education , Humans , Medical Oncology/methods , Medical Oncology/organization & administration , Natural Science Disciplines/methods , Natural Science Disciplines/organization & administration , Neoplasms/diagnosis
20.
Cancer Lett ; 498: 178-187, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33130315

ABSTRACT

The influence of biological sex differences on human health and disease, while being increasingly recognized, has long been underappreciated and underexplored. While humans of all sexes are more alike than different, there is evidence for sex differences in the most basic aspects of human biology and these differences have consequences for the etiology and pathophysiology of many diseases. In a disease like cancer, these consequences manifest in the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, targeted therapies to complex cancer cases is limited by our current understanding of the underlying sex differences. Gaining a better understanding of the implications and interplay of sex differences in diseases like cancer will thus be informative for clinical practice and biological research. Here we review the evidence for a broad array of biological sex differences in humans and discuss how these differences may relate to observed sex differences in various diseases, including many cancers and specifically glioblastoma. We focus on areas of human biology that play vital roles in healthy and disease states, including metabolism, development, hormones, and the immune system, and emphasize that the intersection of sex differences in these areas should not go overlooked. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.


Subject(s)
Glioma/pathology , Glioma/therapy , Animals , Glioma/immunology , Glioma/metabolism , Hormones/metabolism , Humans , Immune System/immunology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...