Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38798637

ABSTRACT

Seasonal influenza viruses frequently acquire mutations that have the potential to alter both virus replication and antigenic profile. Recent seasonal H1N1 viruses have acquired mutations to their hemagglutinin (HA) protein receptor binding site (RBS) and antigenic sites, and have branched into the clades 5a.2a and 5a.2a.1. Both clades demonstrated improved in vitro fitness compared with the parental 5a.2 clade as measured through plaque formation, infectious virus production in human nasal epithelial cells, and receptor binding diversity. Both clades also showed reduced neutralization by serum from healthcare workers vaccinated in the 2022-23 Northern Hemisphere influenza season compared to the vaccine strain. To investigate the phenotypic impact of individual clade-defining mutations, recombinant viruses containing single HA mutations were generated on a 5a.2 genetic background. The 5a.2a mutation Q189E improved plaque formation and virus replication, but was more efficiently neutralized by serum from individuals vaccinated in 2022-23. In contrast, the 5a.2a mutation E224A and both 5a.2a.1 mutations P137S and K142R impaired aspects of in vitro fitness but contributed significantly to antigenic drift. Surprisingly, the E224A mutation and not Q189E caused broader receptor binding diversity seen in clinical isolates of 5a.2a and 5a.2a.1, suggesting that receptor binding diversity alone may not be responsible for the phenotypic effects of the Q189E mutation. These data document an evolutionary trade-off between mutations that improve viral fitness and those that allow for the evasion of existing host immunity.

2.
Nature ; 626(8000): 843-851, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267583

ABSTRACT

HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase2 that is assembled from cohesively interacting phenylalanine-glycine (FG) repeats3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a 'self-translocating' capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.


Subject(s)
Capsid Proteins , Capsid , Glycine , HIV-1 , Nuclear Pore Complex Proteins , Nuclear Pore , Phenylalanine , Humans , Active Transport, Cell Nucleus , Capsid/chemistry , Capsid/metabolism , Glycine/metabolism , HIV-1/chemistry , HIV-1/genetics , HIV-1/metabolism , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore/virology , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Permeability , Phenylalanine/metabolism , Solubility , Virus Internalization , Capsid Proteins/chemistry , Capsid Proteins/metabolism
4.
Nat Commun ; 14(1): 5401, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669942

ABSTRACT

Open science practices such as posting data or code and pre-registering analyses are increasingly prescribed and debated in the applied sciences, but the actual popularity and lifetime usage of these practices remain unknown. This study provides an assessment of attitudes toward, use of, and perceived norms regarding open science practices from a sample of authors published in top-10 (most-cited) journals and PhD students in top-20 ranked North American departments from four major social science disciplines: economics, political science, psychology, and sociology. We observe largely favorable private attitudes toward widespread lifetime usage (meaning that a researcher has used a particular practice at least once) of open science practices. As of 2020, nearly 90% of scholars had ever used at least one such practice. Support for posting data or code online is higher (88% overall support and nearly at the ceiling in some fields) than support for pre-registration (58% overall). With respect to norms, there is evidence that the scholars in our sample appear to underestimate the use of open science practices in their field. We also document that the reported lifetime prevalence of open science practices increased from 49% in 2010 to 87% a decade later.


Subject(s)
Politics , Social Sciences , Humans , Research Personnel , Students , Attitude
5.
Sci Rep ; 13(1): 10223, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353648

ABSTRACT

Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/epidemiology , Antigens, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Phylogeny
6.
bioRxiv ; 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36865250

ABSTRACT

Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-20 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-20 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-20 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.

7.
Cell Rep ; 39(9): 110897, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649381

ABSTRACT

Influenza viruses circulated at very low levels during the beginning of the COVID-19 pandemic, and population immunity against these viruses is low. An H3N2 strain (3C.2a1b.2a2) with a hemagglutinin (HA) that has several substitutions relative to the 2021-22 H3N2 vaccine strain is dominating the 2021-22 Northern Hemisphere influenza season. Here, we show that one of these substitutions eliminates a key glycosylation site on HA and alters sialic acid binding. Using glycan array profiling, we show that the 3C.2a1b.2a2 H3 maintains binding to an extended biantennary sialoside and replicates to high titers in human airway cells. We find that antibodies elicited by the 2021-22 Northern Hemisphere influenza vaccine poorly neutralize the 3C.2a1b.2a2 H3N2 strain. Together, these data indicate that 3C.2a1b.2a2 H3N2 viruses efficiently replicate in human cells and escape vaccine-elicited antibodies.


Subject(s)
COVID-19 , Influenza, Human , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype/genetics , Pandemics , Seasons
8.
EBioMedicine ; 79: 104008, 2022 May.
Article in English | MEDLINE | ID: mdl-35460989

ABSTRACT

BACKGROUND: The increase in SARS-CoV-2 infections in December 2021 was driven primarily by the Omicron variant, which largely displaced the Delta over a three-week span. Outcomes from infection with Omicron remain uncertain. We evaluated whether clinical outcomes and viral loads differed between Delta and Omicron infections during the period when both variants were co-circulating. METHODS: In this retrospective observational cohort study, remnant clinical specimens, positive for SARS-CoV-2 after standard of care testing at the Johns Hopkins Microbiology Laboratory, between the last week of November and the end of December 2021, were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. FINDINGS: The Omicron variant displaced Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N = 1,119) were more likely to be vaccinated compared to patients with Delta (N = 908), but were less likely to be admitted (0.33 CI 0.21-0.52), require ICU level care (0.38 CI 0.17-0.87), or succumb to infection (0.26 CI 0.06-1.02) regardless of vaccination status. There was no statistically significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. INTERPRETATION: Compared to Delta, Omicron was more likely to cause breakthrough infections of vaccinated individuals, yet admissions were less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing Omicron transmission are required as, though the admission risk might be lower, the increased numbers of infections cause large numbers of hospitalizations. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061, and The Modeling Infectious Diseases in Healthcare Network (MInD) under awards U01CK000589.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Hospitals , Humans , Retrospective Studies , SARS-CoV-2/genetics , Viral Load
9.
J Clin Virol ; 150-151: 105151, 2022 06.
Article in English | MEDLINE | ID: mdl-35398602

ABSTRACT

INTRODUCTION: COVID-19 large scale immunization in the US has been associated with breakthrough positive molecular testing. In this study, we investigated whether a positive test is associated with a high anti-viral IgG, specific viral variant, recovery of infectious virus, or symptomatic infection during an early phase after vaccination rollout. METHODS: We identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Respiratory SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort. RESULTS: Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the Alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted. A significant reduction of the recovery of infectious virus on cell culture was accompanied by an increase in localized IgG levels in respiratory samples of vaccinated individuals. CONCLUSIONS: Vaccination reduces the recovery of infectious virus in breakthrough infections caused primarily by the Alpha variant accompanied by an increase in upper respiratory tract IgG levels.


Subject(s)
COVID-19 , Antibodies, Viral , Antiviral Agents , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , RNA, Messenger , Respiratory System , SARS-CoV-2 , Vaccination
10.
J Mol Biol ; 434(9): 167537, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35278476

ABSTRACT

Portal proteins are dodecameric assemblies that occupy a unique 5-fold vertex of the icosahedral capsid of tailed bacteriophages and herpesviruses. The portal vertex interrupts the icosahedral symmetry, and in vivo, its assembly and incorporation in procapsid are controlled by the scaffolding protein. Ectopically expressed portal oligomers are polymorphic in solution, and portal rings built by a different number of subunits have been documented in the literature. In this paper, we describe the cryo-EM structure of the portal protein from the Pseudomonas-phage PaP3, which we determined at 3.4 Å resolution. Structural analysis revealed a dodecamer with helical rather than rotational symmetry, which we hypothesize is kinetically trapped. The helical assembly was stabilized by local mispairing of portal subunits caused by the slippage of crown and barrel helices that move like a lever with respect to the portal body. Removing the C-terminal barrel promoted assembly of undecameric and dodecameric rings with quasi-rotational symmetry, suggesting that the barrel contributes to subunits mispairing. However, ΔC-portal rings were intrinsically asymmetric, with most particles having one open portal subunit interface. Together, these data expand the structural repertoire of viral portal proteins to Pseudomonas-phages and shed light on the unexpected plasticity of the portal protein quaternary structure.


Subject(s)
Capsid Proteins , Capsid , Pseudomonas Phages , Capsid/chemistry , Capsid Proteins/chemistry , Cryoelectron Microscopy , Protein Conformation , Pseudomonas Phages/chemistry , Virus Assembly
11.
Microorganisms ; 10(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35336080

ABSTRACT

Bacterial viruses (or bacteriophages) have developed formidable ways to deliver their genetic information inside bacteria, overcoming the complexity of the bacterial-cell envelope. In short-tailed phages of the Podoviridae superfamily, genome ejection is mediated by a set of mysterious internal virion proteins, also called ejection or pilot proteins, which are required for infectivity. The ejection proteins are challenging to study due to their plastic structures and transient assembly and have remained less characterized than classical components such as the phage coat protein or terminase subunit. However, a spate of recent cryo-EM structures has elucidated key features underscoring these proteins' assembly and conformational gymnastics that accompany their expulsion from the virion head through the portal protein channel into the host. In this review, we will use a phage-T7-centric approach to critically review the status of the literature on ejection proteins, decipher the conformational changes of T7 ejection proteins in the pre- and post-ejection conformation, and predict the conservation of these proteins in other Podoviridae. The challenge is to relate the structure of the ejection proteins to the mechanisms of genome ejection, which are exceedingly complex and use the host's machinery.

12.
PeerJ ; 10: e12307, 2022.
Article in English | MEDLINE | ID: mdl-35127275

ABSTRACT

Robust measures of animal densities are necessary for effective wildlife management. Leopards (Panthera pardus) and spotted hyenas (Crocuta Crocuta) are higher order predators that are data deficient across much of their East African range and in Uganda, excepting for one peer-reviewed study on hyenas, there are presently no credible population estimates for these species. A lack of information on the population status and even baseline densities of these species has ramifications as leopards are drawcards for the photo-tourism industry, and along with hyenas are often responsible for livestock depredations from pastoralist communities. Leopards are also sometimes hunted for sport. Establishing baseline density estimates for these species is urgently needed not only for population monitoring purposes, but in the design of sustainable management offtakes, and in assessing certain conservation interventions like financial compensation for livestock depredation. Accordingly, we ran a single-season survey of these carnivores in the Lake Mburo National Park of south-western Uganda using 60 remote camera traps distributed in a paired format at 30 locations. We analysed hyena and leopard detections under a Bayesian spatially explicit capture-recapture (SECR) modelling framework to estimate their densities. This small national park (370 km2) is surrounded by Bahima pastoralist communities with high densities of cattle on the park edge (with regular park incursions). Leopard densities were estimated at 6.31 individuals/100 km2 (posterior SD = 1.47, 95% CI [3.75-9.20]), and spotted hyena densities were 10.99 individuals/100 km2, but with wide confidence intervals (posterior SD = 3.35, 95% CI [5.63-17.37]). Leopard and spotted hyena abundance within the boundaries of the national park were 24.87 (posterior SD 7.78) and 39.07 individuals (posterior = SD 13.51) respectively. Leopard densities were on the middle end of SECR studies published in the peer-reviewed literature over the last 5 years while spotted hyena densities were some of the first reported in the literature using SECR, and similar to a study in Botswana which reported 11.80 spotted hyenas/100 km2. Densities were not noticeably lower at the park edge, and in the southwest of our study site, despite repeated cattle incursions into these areas. We postulate that the relatively high densities of both species in the region could be owed to impala Aepyceros melampus densities ranging from 16.6-25.6 impala/km2. Another, potential explanatory variable (albeit a speculative one) is the absence of interspecific competition from African lions (Panthera leo), which became functionally extinct (there is only one male lion present) in the park nearly two decades ago. This study provides the first robust population estimate of these species anywhere in Uganda and suggests leopards and spotted hyenas continue to persist in the highly modified landscape of Lake Mburo National Park.


Subject(s)
Antelopes , Carnivora , Hyaenidae , Lions , Panthera , Male , Animals , Cattle , Lakes , Parks, Recreational , Bayes Theorem , Uganda , Livestock
13.
medRxiv ; 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35118480

ABSTRACT

BACKGROUND: The increase in SARS-CoV-2 infections in December 2021 in the United States was driven primarily by the Omicron variant which largely displaced the Delta over a three week span. Outcomes from infection with the Omicron remain uncertain. We evaluate whether clinical outcomes and viral loads differ between Delta and Omicron infections during the period when both variants were co-circulating. METHODS: Remnant clinical specimens from patients that tested positive for SARS-CoV-2 after standard of care testing between the last week of November and the end of December 2021were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. RESULTS: The Omicron variant displaced the Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N= 1121) were more likely to be vaccinated compared to patients with Delta (N = 910), but were less likely to be admitted, require ICU level care, or succumb to infection regardless of vaccination status. There was no significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. CONCLUSIONS: Omicron infections of vaccinated individuals are expected, yet admissions are less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing the Omicron transmission are required as even though the admission risk is lower, the numbers of infections continue to be high. RESEARCH IN CONTEXT EVIDENCE BEFORE THIS STUDY: The unprecedented increase in COVID-19 cases in the month of December 2021, associated with the displacement of the Delta variant with the Omicron, triggered a lot of concerns. An understanding of the disease severity associated with infections with Omicron is essential as well as the virological determinants that contributed to its widespread predominance. We searched PubMed for articles published up to January 23, 2022, using the search terms ("Omicron") AND ("Disease severity") as well as ("Omicron") AND ("Viral load") And/ or ("Cell culture"). Our search yielded 3 main studies that directly assessed the omicron's clinical severity in South Africa, its infectious viral load compared to Delta, and the dynamics of viral RNA shedding. In South Africa, compared to Delta, Omicron infected patients showed a significant reduction in severe disease. In this study, Omicron and non-Omicron variants were characterized based on S gene target failure using the TaqPath COVID-19 PCR (Thermo Fisher Scientific). In the study from Switzerland that assessed the infectious viral load in Omicron versus Delta, the authors analyzed only 18 Omicron samples that were all from vaccinated individuals to show that compared to Delta, Omicron had equivalent infectious viral titers. The third study that assessed the Omicron viral dynamics showed that the peak viral RNA in Omicron infections is lower than Delta. No published studies assessed the clinical discrepancies of Omicron and Delta infected patients from the US, nor comprehensively assessed, by viral load and cell culture studies, the characteristics of both variants stratified by vaccination status. ADDED VALUE OF THIS STUDY: To the best of our knowledge, this is the only study to date to compare the clinical characteristics and outcomes after infection with the Omicron variant compared to Delta in the US using variants characterized by whole genome sequencing and a selective time frame when both variant co-circulated. It is also the first study to stratify the analysis based on the vaccination status and to compare fully vaccinated patients who didn't receive a booster vaccination to patients who received a booster vaccination. In addition, we provide a unique viral RNA and infectious virus load analyses to compare Delta and Omicron samples from unvaccinated, fully vaccinated, and patients with booster vaccination. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE: Omicron associated with a significant increase in infections in fully and booster vaccinated individuals but with less admissions and ICU level care. Admitted patients showed similar requirements for supplemental oxygen and ICU level care when compared to Delta admitted patients. Viral loads were similar in samples from Omicron and Delta infected patients regardless of the vaccination status. The recovery of infectious virus on cell culture was reduced in samples from patients infected with Delta who received a booster dose, but this was not the case with Omicron. The recovery of infectious virus was equivalent in Omicron infected unvaccinated, fully vaccinated, and samples from patients who received booster vaccination. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.

14.
Clin Infect Dis ; 75(1): e715-e725, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34922338

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) B.1.617.2 (Delta) displaced B.1.1.7 (Alpha) and is associated with increases in coronavirus disease 2019 (COVID-19) cases, greater transmissibility, and higher viral RNA loads, but data are lacking regarding the infectious virus load and antiviral antibody levels in the nasal tract. METHODS: Whole genome sequencing, cycle threshold (Ct) values, infectious virus, anti-SARS-CoV-2 immunoglobulin G (IgG) levels, and clinical chart reviews were combined to characterize SARS-CoV-2 lineages circulating in the National Capital Region between January and September 2021 and differentiate infections in vaccinated and unvaccinated individuals by the Delta, Alpha, and B.1.2 (the predominant lineage prior to Alpha) variants. RESULTS: The Delta variant displaced the Alpha variant to constitute 99% of the circulating lineages in the National Capital Region by August 2021. In Delta infections, 28.5% were breakthrough cases in fully vaccinated individuals compared to 4% in the Alpha infected cohort. Breakthrough infections in both cohorts were associated with comorbidities, but only Delta infections were associated with a significant increase in the median days after vaccination. More than 74% of Delta samples had infectious virus compared to <30% from the Alpha cohort. The recovery of infectious virus with both variants was associated with low levels of local SARS-CoV-2 IgG. CONCLUSIONS: Infection with the Delta variant was associated with more frequent recovery of infectious virus in vaccinated and unvaccinated individuals compared to the Alpha variant but was not associated with an increase in disease severity in fully vaccinated individuals. Infectious virus was correlated with the presence of low amounts of antiviral IgG in the nasal specimens.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents , Humans , Immunoglobulin G , SARS-CoV-2/genetics
15.
STAR Protoc ; 2(4): 100960, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34825220

ABSTRACT

Bacteriophages of the Podoviridae family densely package their genomes into precursor capsids alongside internal virion proteins called ejection proteins. In phage T7 these proteins (gp14, gp15, and gp16) are ejected into the host envelope forming a DNA-ejectosome for genome delivery. Here, we describe the purification and characterization of recombinant gp14, gp15, and gp16. This protocol was used for high-resolution cryo-EM structure analysis of the T7 periplasmic tunnel and can be adapted to study ejection proteins from other phages. For complete details on the use and execution of this protocol, please refer to Swanson et al. (2021).


Subject(s)
Bacteriophage T7 , Cryoelectron Microscopy/methods , Recombinant Proteins , Viral Proteins , Bacteriophage T7/genetics , Bacteriophage T7/metabolism , Escherichia coli/genetics , Periplasm/chemistry , Periplasm/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/isolation & purification , Viral Proteins/metabolism
16.
medRxiv ; 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34462756

ABSTRACT

BACKGROUND: The emerging SARS-CoV-2 variant of concern (VOC) B.1.6.17.2 (Delta) quickly displaced the B.1.1.7 (Alpha) and is associated with increases in COVID-19 cases nationally. The Delta variant has been associated with greater transmissibility and higher viral RNA loads in both unvaccinated and fully vaccinated individuals. Data is lacking regarding the infectious virus load in Delta infected individuals and how that compares to individuals infected with other SARS-CoV-2 lineages. METHODS: Whole genome sequencing of 2,785 clinical isolates was used to characterize the prevalence of SARS-CoV-2 lineages circulating in the National Capital Region between January and July 2021. Clinical chart reviews were performed for the Delta, Alpha, and B.1.2 (a control predominant lineage prior to both VOCs) variants to evaluate disease severity and outcome and Cycle threshold values (Cts) were compared. The presence of infectious virus was determined using Vero-TMPRSS2 cells and anti-SARS-CoV-2 IgG levels were determined from upper respiratory specimen. An analysis of infection in unvaccinated and fully vaccinated populations was performed. RESULTS: The Delta variant displaced the Alpha variant to constitute 88.2% of the circulating lineages in the National Capital Region by July, 2021. The Delta variant associated with increased breakthrough infections in fully vaccinated individuals that were mostly symptomatic when compared to the Alpha breakthrough infections, though it is important to note there was a significantly longer period of time between vaccination and infection with Delta infections. The recovery of infectious virus on cell culture was significantly higher with the Delta variant compared to Alpha in both vaccinated and unvaccinated groups. The impact of vaccination on reducing the recovery of infectious virus from clinical samples was only observed with Alpha variant infections but was strongly associated with low localized SARS-CoV-2 IgG for both variants. A comparison of Ct values showed a significant decrease in the Delta compared to Alpha with no significant differences between unvaccinated and vaccinated groups. CONCLUSIONS: Our data indicate that the Delta variant is associated with increased infectious virus loads when compared to the Alpha variant and decreased upper respiratory antiviral IgG levels. Measures to reduce transmission in addition to increasing vaccinations rates have to be implemented to reduce Delta variant spread. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.

17.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34214465

ABSTRACT

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Subject(s)
Bacteriophage T7/genetics , DNA, Viral/chemistry , Periplasm/chemistry , Viral Core Proteins/chemistry , Computational Biology , Cryoelectron Microscopy , Cytoplasm/chemistry , DNA, Viral/metabolism , Lipid Bilayers/metabolism , Periplasm/genetics , Periplasm/metabolism , Podoviridae/chemistry , Podoviridae/genetics , Viral Core Proteins/metabolism
18.
medRxiv ; 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34268528

ABSTRACT

INTRODUCTION: COVID-19 large scale immunization in the US has been associated with infrequent breakthrough positive molecular testing. Whether a positive test is associated with a high viral RNA load, specific viral variant, recovery of infectious virus, or symptomatic infection is largely not known. METHODS: In this study, we identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021 with a time that extended from 2 to 100 days after the second dose. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Local SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort from a matched time frame. RESULTS: Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted when genomes were compared to a large control cohort from a matched time frame. A significant reduction of the recovery of infectious virus on cell culture as well as delayed time to the first appearance of cytopathic effect was accompanied by an increase in local IgG levels in respiratory samples of vaccinated individuals but upper respiratory tract IgG levels were not different between symptomatic or asymptomatic infections. CONCLUSIONS: Vaccination reduces the recovery of infectious virus in breakthrough infections accompanied by an increase in upper respiratory tract local immune responses. FUNDING: National Institute of Health (The Johns Hopkins Center of Excellence in Influenza Research and Surveillance, HHSN272201400007C), Johns Hopkins University, Maryland Department of Health, Centers for Disease Control and Prevention.

19.
Nucleic Acids Res ; 48(20): 11721-11736, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33125059

ABSTRACT

The genome packaging motor of tailed bacteriophages and herpesviruses is a powerful nanomachine built by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal vertex of an empty precursor capsid (or procapsid) to power genome encapsidation. Terminase subunits have been studied in-depth, especially in classical bacteriophages that infect Escherichia coli or Salmonella, yet, less is known about the packaging motor of Pseudomonas-phages that have increasing biomedical relevance. Here, we investigated the small terminase subunit from three Podoviridae phages that infect Pseudomonas aeruginosa. We found TerS is polymorphic in solution but assembles into a nonamer in its high-affinity heparin-binding conformation. The atomic structure of Pseudomonas phage PaP3 TerS, the first complete structure for a TerS from a cos phage, reveals nine helix-turn-helix (HTH) motifs asymmetrically arranged around a ß-stranded channel, too narrow to accommodate DNA. PaP3 TerS binds DNA in a sequence-specific manner in vitro. X-ray scattering and molecular modeling suggest TerS adopts an open conformation in solution, characterized by dynamic HTHs that move around an oligomerization core, generating discrete binding crevices for DNA. We propose a model for sequence-specific recognition of packaging initiation sites by lateral interdigitation of DNA.


Subject(s)
DNA/metabolism , Endodeoxyribonucleases/chemistry , Pseudomonas Phages/enzymology , Viral Proteins/chemistry , Base Sequence , DNA/chemistry , Endodeoxyribonucleases/metabolism , Helix-Turn-Helix Motifs , Models, Molecular , Protein Binding , Pseudomonas aeruginosa/virology , Viral Proteins/metabolism
20.
Structure ; 26(12): 1565-1567, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30517883

ABSTRACT

In this issue of Structure, Dunne et al. (2018) unveil the architecture of Salmonella phage S16 adhesin. The structure unravels a beads-on-a-string topology consisting of three domains of which the C-terminal glycine-rich PGII domain, located at the distal tip of the long tail fiber, mediates cell surface attachment and host recognition.


Subject(s)
Bacteriophages , Salmonella Phages , Peptides , Virion
SELECTION OF CITATIONS
SEARCH DETAIL
...