Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 6(3): 1091-111, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24618810

ABSTRACT

Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)2-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24-30 nM; k(on) ~ 105 M⁻¹ s⁻¹, k(off) ~ 0.0045 s⁻¹). The bivalent (DAF)2-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (K(d) = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.


Subject(s)
CD55 Antigens/metabolism , Receptors, Virus/metabolism , Sin Nombre virus/physiology , Virus Attachment , Humans , Microspheres
2.
Anal Biochem ; 442(2): 149-57, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23928044

ABSTRACT

We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.


Subject(s)
Enzyme Assays/methods , Flow Cytometry/methods , GTP Phosphohydrolases/metabolism , Microspheres , Animals , Chlorocebus aethiops , Enzyme Activation , HeLa Cells , Humans , Single-Cell Analysis , Time Factors , Vero Cells
3.
J Biol Chem ; 288(12): 8531-8543, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23382385

ABSTRACT

Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.


Subject(s)
Enzyme Inhibitors/pharmacology , Molecular Probes/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , cdc42 GTP-Binding Protein/antagonists & inhibitors , 3T3 Cells , Allosteric Regulation , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Humans , Integrin alpha4beta1/antagonists & inhibitors , Integrin alpha4beta1/physiology , Mice , Oligopeptides/metabolism , Phenylurea Compounds/metabolism , Protein Binding , Pseudopodia/drug effects , Sin Nombre virus/physiology , Structure-Activity Relationship , Virus Internalization/drug effects , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...