Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 63(7): 2058-2072, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36988562

ABSTRACT

Intrinsically disordered regions of proteins often mediate important protein-protein interactions. However, the folding-upon-binding nature of many polypeptide-protein interactions limits the ability of modeling tools to predict the three-dimensional structures of such complexes. To address this problem, we have taken a tandem approach combining NMR chemical shift data and molecular simulations to determine the structures of peptide-protein complexes. Here, we use the MELD (Modeling Employing Limited Data) technique applied to polypeptide complexes formed with the extraterminal domain (ET) of bromo and extraterminal domain (BET) proteins, which exhibit a high degree of binding plasticity. This system is particularly challenging as the binding process includes allosteric changes across the ET receptor upon binding, and the polypeptide binding partners can adopt different conformations (e.g., helices and hairpins) in the complex. In a blind study, the new approach successfully modeled bound-state conformations and binding poses, using only protein receptor backbone chemical shift data, in excellent agreement with experimentally determined structures for moderately tight (Kd ∼100 nM) binders. The hybrid MELD + NMR approach required additional peptide ligand chemical shift data for weaker (Kd ∼250 µM) peptide binding partners. AlphaFold also successfully predicts the structures of some of these peptide-protein complexes. However, whereas AlphaFold can provide qualitative peptide rankings, MELD can directly estimate relative binding affinities. The hybrid MELD + NMR approach offers a powerful new tool for structural analysis of protein-polypeptide complexes involving disorder-to-order transitions upon complex formation, which are not successfully modeled with most other complex prediction methods, providing both the 3D structures of peptide-protein complexes and their relative binding affinities.


Subject(s)
Molecular Dynamics Simulation , Peptides , Protein Binding , Proteins/chemistry , Protein Structure, Secondary , Protein Conformation
2.
J Magn Reson ; 342: 107268, 2022 09.
Article in English | MEDLINE | ID: mdl-35930941

ABSTRACT

NMR is a valuable experimental tool in the structural biologist's toolkit to elucidate the structures, functions, and motions of biomolecules. The progress of machine learning, particularly in structural biology, reveals the critical importance of large, diverse, and reliable datasets in developing new methods and understanding in structural biology and science more broadly. Biomolecular NMR research groups produce large amounts of data, and there is renewed interest in organizing these data to train new, sophisticated machine learning architectures and to improve biomolecular NMR analysis pipelines. The foundational data type in NMR is the free-induction decay (FID). There are opportunities to build sophisticated machine learning methods to tackle long-standing problems in NMR data processing, resonance assignment, dynamics analysis, and structure determination using NMR FIDs. Our goal in this study is to provide a lightweight, broadly available tool for archiving FID data as it is generated at the spectrometer, and grow a new resource of FID data and associated metadata. This study presents a relational schema for storing and organizing the metadata items that describe an NMR sample and FID data, which we call Spectral Database (SpecDB). SpecDB is implemented in SQLite and includes a Python software library providing a command-line application to create, organize, query, backup, share, and maintain the database. This set of software tools and database schema allow users to store, organize, share, and learn from NMR time domain data. SpecDB is freely available under an open source license at https://github.rpi.edu/RPIBioinformatics/SpecDB.


Subject(s)
Software , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods
3.
Proteins ; 89(12): 1959-1976, 2021 12.
Article in English | MEDLINE | ID: mdl-34559429

ABSTRACT

NMR studies can provide unique information about protein conformations in solution. In CASP14, three reference structures provided by solution NMR methods were available (T1027, T1029, and T1055), as well as a fourth data set of NMR-derived contacts for an integral membrane protein (T1088). For the three targets with NMR-based structures, the best prediction results ranged from very good (GDT_TS = 0.90, for T1055) to poor (GDT_TS = 0.47, for T1029). We explored the basis of these results by comparing all CASP14 prediction models against experimental NMR data. For T1027, NMR data reveal extensive internal dynamics, presenting a unique challenge for protein structure prediction methods. The analysis of T1029 motivated exploration of a novel method of "inverse structure determination," in which an AlphaFold2 model was used to guide NMR data analysis. NMR data provided to CASP predictor groups for target T1088, a 238-residue integral membrane porin, was also used to assess several NMR-assisted prediction methods. Most groups involved in this exercise generated similar beta-barrel models, with good agreement with the experimental data. However, as was also observed in CASP13, some pure prediction groups that did not use any NMR data generated models for T1088 that better fit the NMR data than the models generated using these experimental data. These results demonstrate the remarkable power of modern methods to predict structures of proteins with accuracies rivaling solution NMR structures, and that it is now possible to reliably use prediction models to guide and complement experimental NMR data analysis.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Membrane Proteins , Models, Molecular , Protein Conformation , Software , Computational Biology , Machine Learning , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Folding , Sequence Analysis, Protein
4.
Structure ; 29(8): 886-898.e6, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33592170

ABSTRACT

The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded ß-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded ß-sheet interaction, but the orientation of the ß hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Integrases/chemistry , Leukemia Virus, Murine/enzymology , Nuclear Proteins/chemistry , Transcription Factors/chemistry , Binding Sites , Histone-Lysine N-Methyltransferase/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Integrases/metabolism , Models, Molecular , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation , Viral Proteins/chemistry , Viral Proteins/metabolism
5.
Proteins ; 87(12): 1315-1332, 2019 12.
Article in English | MEDLINE | ID: mdl-31603581

ABSTRACT

CASP13 has investigated the impact of sparse NMR data on the accuracy of protein structure prediction. NOESY and 15 N-1 H residual dipolar coupling data, typical of that obtained for 15 N,13 C-enriched, perdeuterated proteins up to about 40 kDa, were simulated for 11 CASP13 targets ranging in size from 80 to 326 residues. For several targets, two prediction groups generated models that are more accurate than those produced using baseline methods. Real NMR data collected for a de novo designed protein were also provided to predictors, including one data set in which only backbone resonance assignments were available. Some NMR-assisted prediction groups also did very well with these data. CASP13 also assessed whether incorporation of sparse NMR data improves the accuracy of protein structure prediction relative to nonassisted regular methods. In most cases, incorporation of sparse, noisy NMR data results in models with higher accuracy. The best NMR-assisted models were also compared with the best regular predictions of any CASP13 group for the same target. For six of 13 targets, the most accurate model provided by any NMR-assisted prediction group was more accurate than the most accurate model provided by any regular prediction group; however, for the remaining seven targets, one or more regular prediction method provided a more accurate model than even the best NMR-assisted model. These results suggest a novel approach for protein structure determination, in which advanced prediction methods are first used to generate structural models, and sparse NMR data is then used to validate and/or refine these models.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Models, Molecular , Protein Conformation , Protein Folding , Proteins/chemistry , Algorithms , Computer Simulation , Crystallography, X-Ray , Reproducibility of Results
6.
Biochemistry ; 58(38): 3943-3954, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31436959

ABSTRACT

Members of an important group of industrial enzymes, Rhizopus lipases, exhibit valuable hydrolytic features that underlie their biological functions. Particularly important is their N-terminal polypeptide segment (NTPS), which is required for secretion and proper folding but is removed in the process of enzyme maturation. A second common feature of this class of lipases is the α-helical "lid", which regulates the accessibility of the substrate to the enzyme active site. Some Rhizopus lipases also exhibit "interfacial activation" by micelle and/or aggregate surfaces. While it has long been recognized that the NTPS is critical for function, its dynamic features have frustrated efforts to characterize its structure by X-ray crystallography. Here, we combine nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the structure and dynamics of Rhizopus chinensis lipase (RCL) with its 27-residue NTPS prosequence (r27RCL). Both r27RCL and the truncated mature form of RCL (mRCL) exhibit biphasic interfacial activation kinetics with p-nitrophenyl butyrate (pNPB). r27RCL exhibits a substrate binding affinity significantly lower than that of mRCL due to stabilization of the closed lid conformation by the NTPS. In contrast to previous predictions, the NTPS does not enhance lipase activity by increasing surface hydrophobicity but rather inhibits activity by forming conserved interactions with both the closed lid and the core protein structure. Single-site mutations and kinetic studies were used to confirm that the NTPS serves as internal competitive inhibitor and to develop a model of the associated process of interfacial activation. These structure-function studies provide the basis for engineering RCL lipases with enhanced catalytic activities.


Subject(s)
Fungal Proteins/chemistry , Industrial Microbiology , Lipase/chemistry , Peptides/chemistry , Rhizopus/enzymology , Amino Acid Sequence , Crystallography, X-Ray , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolysis , Kinetics , Lipase/genetics , Lipase/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/genetics , Peptides/metabolism , Structure-Activity Relationship , Substrate Specificity
7.
J Biol Chem ; 294(11): 4027-4044, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30655293

ABSTRACT

As complications associated with antibiotic resistance have intensified, copper (Cu) is attracting attention as an antimicrobial agent. Recent studies have shown that copper surfaces decrease microbial burden, and host macrophages use Cu to increase bacterial killing. Not surprisingly, microbes have evolved mechanisms to tightly control intracellular Cu pools and protect against Cu toxicity. Here, we identified two genes (copB and copL) encoded within the Staphylococcus aureus arginine-catabolic mobile element (ACME) that we hypothesized function in Cu homeostasis. Supporting this hypothesis, mutational inactivation of copB or copL increased copper sensitivity. We found that copBL are co-transcribed and that their transcription is increased during copper stress and in a strain in which csoR, encoding a Cu-responsive transcriptional repressor, was mutated. Moreover, copB displayed genetic synergy with copA, suggesting that CopB functions in Cu export. We further observed that CopL functions independently of CopB or CopA in Cu toxicity protection and that CopL from the S. aureus clone USA300 is a membrane-bound and surface-exposed lipoprotein that binds up to four Cu+ ions. Solution NMR structures of the homologous Bacillus subtilis CopL, together with phylogenetic analysis and chemical-shift perturbation experiments, identified conserved residues potentially involved in Cu+ coordination. The solution NMR structure also revealed a novel Cu-binding architecture. Of note, a CopL variant with defective Cu+ binding did not protect against Cu toxicity in vivo Taken together, these findings indicate that the ACME-encoded CopB and CopL proteins are additional factors utilized by the highly successful S. aureus USA300 clone to suppress copper toxicity.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Copper/toxicity , Operon/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Carrier Proteins/genetics , Cell Membrane/drug effects , Copper/metabolism , Staphylococcus aureus/metabolism
8.
Biochemistry ; 57(47): 6581-6591, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30289697

ABSTRACT

Deficits in DNA damage-repair pathways are the root cause of several human cancers. In mammalian cells, DNA double-strand break repair is carried out by multiple mechanisms, including homologous recombination (HR). The partner and localizer of BRCA2 (PALB2), which is an essential factor for HR, binds to the breast cancer susceptibility 1 (BRCA1) protein at DNA double-strand breaks. At the break site, PALB2 also associates with the breast cancer susceptibility 2 (BRCA2) protein to form a multiprotein complex that facilitates HR. The BRCA1-PALB2 interaction is mediated by association of predicted helical coiled-coil regions in both proteins. PALB2 can also homodimerize through the formation of a coiled coil by the self-association of helical elements at the N-terminus of the PALB2 protein, and this homodimerization has been proposed to regulate the efficiency of HR. We have produced a segment of PALB2, designated PALB2cc (PALB2 coiled coil segment) that forms α-helical structures, which assemble into stable homodimers. PALB2cc also forms heterodimers with a helical segment of BRCA1, called BRCA1cc (BRCA1 coiled coil segment). The three-dimensional structure of the homodimer formed by PALB2cc was determined by solution NMR spectroscopy. This PALB2cc homodimer is a classical antiparallel coiled-coil leucine zipper. NMR chemical-shift perturbation studies were used to study dimer formation for both the PALB2cc homodimer and the PALB2cc/BRCA1cc heterodimer. The mutation of residue Leu24 of PALB2cc  significantly reduces its homodimer stability, but has a more modest effect on the stability of the heterodimer formed between PALB2cc and BRCA1cc. We show that mutation of Leu24 leads to genomic instability and reduced cell viability after treatment with agents that induce DNA double-strand breaks. These studies may allow the identification of distinct mutations of PALB2cc that selectively disrupt homodimeric versus heterodimeric interactions, and reveal the specific role of PALB2cc homodimerization in HR.


Subject(s)
DNA Damage , DNA Repair , Fanconi Anemia Complementation Group N Protein/chemistry , Fanconi Anemia Complementation Group N Protein/metabolism , Protein Multimerization , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Animals , B-Lymphocytes/metabolism , BRCA1 Protein , Cells, Cultured , Crystallography, X-Ray , Mice , Protein Conformation
9.
J Am Chem Soc ; 140(36): 11210-11213, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30141918

ABSTRACT

Ambidoxin is a designed, minimal dodecapeptide consisting of alternating L and D amino acids that binds a 4Fe-4S cluster through ligand-metal interactions and an extensive network of second-shell hydrogen bonds. The peptide can withstand hundreds of oxidation-reduction cycles at room temperature. Ambidoxin suggests how simple, prebiotic peptides may have achieved robust redox catalysis on the early Earth.


Subject(s)
Iron-Sulfur Proteins/chemistry , Electrochemical Techniques , Electron Transport , Ligands , Oxidation-Reduction
10.
Cell Death Dis ; 9(2): 215, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440715

ABSTRACT

Metabolism of cancer cells is characterized by aerobic glycolysis, or the Warburg effect. Aerobic glycolysis reduces pyruvate flux into mitochondria, preventing a complete oxidation of glucose and shunting glucose to anabolic pathways essential for cell proliferation. Here we tested a new strategy, mitochondrial uncoupling, for its potential of antagonizing the anabolic effect of aerobic glycolysis and for its potential anticancer activities. Mitochondrial uncoupling is a process that facilitates proton influx across the mitochondrial inner membrane without generating ATP, stimulating a futile cycle of acetyl- CoA oxidation. We tested two safe mitochondrial uncouplers, NEN (niclosamide ethanolamine) and oxyclozanide, on their metabolic effects and anti-cancer activities. We used metabolomic NMR to examine the effect of mitochondrial uncoupling on glucose metabolism in colon cancer MC38 cells. We further tested the anti-cancer effect of NEN and oxyclozanide in cultured cell models, APCmin/+ mouse model, and a metastatic colon cancer mouse model. Using a metabolomic NMR approach, we demonstrated that mitochondrial uncoupling promotes pyruvate influx to mitochondria and reduces various anabolic pathway activities. Moreover, mitochondrial uncoupling inhibits cell proliferation and reduces clonogenicity of cultured colon cancer cells. Furthermore, oral treatment with mitochondrial uncouplers reduces intestinal polyp formation in APCmin/+ mice, and diminishes hepatic metastasis of colon cancer cells transplanted intrasplenically. Our data highlight a unique approach for targeting cancer cell metabolism for cancer prevention and treatment, identified two prototype compounds, and shed light on the anti-cancer mechanism of niclosamide.


Subject(s)
Antinematodal Agents/therapeutic use , Colonic Neoplasms/complications , Ethanolamine/therapeutic use , Liver Neoplasms/secondary , Niclosamide/therapeutic use , Oxyclozanide/therapeutic use , Animals , Antinematodal Agents/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Ethanolamine/pharmacology , Humans , Liver Neoplasms/pathology , Mice , Niclosamide/pharmacology , Oxyclozanide/pharmacology
11.
Biomol NMR Assign ; 12(1): 63-68, 2018 04.
Article in English | MEDLINE | ID: mdl-28929427

ABSTRACT

Lipase r27RCL is a 296-residue, 33 kDa monomeric enzyme with high ester hydrolysis activity, which has significant applications in the baking, paper and leather industries. The lipase gene proRCL from Rhizopus microsporus var. chinensis (also Rhizopus chinensis) CCTCC M201021 was cloned as a fusion construct C-terminal to a maltose-binding protein (MBP) tag, and expressed as MBP-proRCL in an Escherichia coli BL21 trxB (DE3) expression system with uniform 2H,13C,15N-enrichment and Ile-δ1, Leu, and Val 13CH3 methyl labeling. The fusion protein was hydrolyzed by Kex2 protease at the recognition site Lys-Arg between residues -29 and -28 of the prosequence, producing the enzyme form called r27RCL. Here we report extensive backbone 1H, 15N, and 13C, as well as Ile-δ1, Leu, and Val side chain methyl, NMR resonance assignments for r27RCL.


Subject(s)
Lipase/chemistry , Nuclear Magnetic Resonance, Biomolecular , Rhizopus/enzymology , Amino Acid Sequence
12.
Science ; 355(6321): 201-206, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28082595

ABSTRACT

Active sites and ligand-binding cavities in native proteins are often formed by curved ß sheets, and the ability to control ß-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling ß-sheet curvature by studying the geometry of ß sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved ß sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that ß-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.


Subject(s)
Protein Conformation, beta-Strand , Protein Engineering/methods , Catalytic Domain , Crystallography, X-Ray , Ligands , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Folding
13.
Proteins ; 85(4): 731-740, 2017 04.
Article in English | MEDLINE | ID: mdl-28120439

ABSTRACT

The nature of flexibility in the helix-turn-helix region of E. coli trp aporepressor has been unexplained for many years. The original ensemble of nuclear magnetic resonance (NMR structures showed apparent disorder, but chemical shift and relaxation measurements indicated a helical region. Nuclear Overhauser effect (NOE) data for a temperature-sensitive mutant showed more helical character in its helix-turn-helix region, but nevertheless also led to an apparently disordered ensemble. However, conventional NMR structure determination methods require all structures in the ensemble to be consistent with every NOE simultaneously. This work uses an alternative approach in which some structures of the ensemble are allowed to violate some NOEs to permit modeling of multiple conformational states that are in dynamic equilibrium. Newly measured NOE data for wild-type aporepressor are used as time-averaged distance restraints in molecular dynamics simulations to generate an ensemble of helical conformations that is more consistent with the observed NMR data than the apparent disorder in the previously reported NMR structures. The results indicate the presence of alternating helical conformations that provide a better explanation for the flexibility of the helix-turn-helix region of trp aporepressor. Structures representing these conformations have been deposited with PDB ID: 5TM0. Proteins 2017; 85:731-740. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli/chemistry , Repressor Proteins/chemistry , Tryptophan/chemistry , Bacterial Proteins/metabolism , Binding Sites , Escherichia coli/metabolism , Kinetics , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Repressor Proteins/metabolism , Tryptophan/metabolism
14.
Microb Cell Fact ; 15(1): 123, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27411547

ABSTRACT

BACKGROUND: In order to use most modern methods of NMR spectroscopy to study protein structure and dynamics, isotope-enriched protein samples are essential. Especially for larger proteins (>20 kDa), perdeuterated and Ile (δ1), Leu, and Val methyl-protonated protein samples are required for suppressing nuclear relaxation to provide improved spectral quality, allowing key backbone and side chain resonance assignments needed for protein structure and dynamics studies. Escherichia coli and Pichia pastoris are two of the most popular expression systems for producing isotope-enriched, recombinant protein samples for NMR investigations. The P. pastoris system can be used to produce (13)C, (15)N-enriched and even (2)H,(13)C, (15)N-enriched protein samples, but efficient methods for producing perdeuterated proteins with Ile (δ1), Leu and Val methyl-protonated groups in P. pastoris are still unavailable. Glycosylation heterogeneity also provides challenges to NMR studies. E. coli expression systems are efficient for overexpressing perdeuterated and Ile (δ1), Leu, Val methyl-protonated protein samples, but are generally not successful for producing secreted eukaryotic proteins with native disulfide bonds. RESULTS: The 33 kDa protein-Rhizopus chinensis lipase (RCL), an important industrial enzyme, was produced using both P. pastoris and E. coli BL21 trxB (DE3) systems. Samples produced from both systems exhibit identical native disulfide bond formation and similar 2D NMR spectra, indicating similar native protein folding. The yield of (13)C, (15)N-enriched r27RCL produced using P. pastoris was 1.7 times higher that obtained using E. coli, while the isotope-labeling efficiency was ~15 % lower. Protein samples produced in P. pastoris exhibit O-glycosylation, while the protein samples produced in E. coli were not glycosylated. The specific activity of r27RCL from P. pastoris was ~1.4 times higher than that produced in E. coli. CONCLUSIONS: These data demonstrate efficient production of (2)H, (13)C, (15)N-enriched, Ile (δ1), Leu, Val methyl-protonated eukaryotic protein r27RCL with native disulfides using the E. coli BL21 trxB (DE3) system. For certain NMR studies, particularly efforts for resonance assignments, structural studies, and dynamic studies, E. coli provides a cost-effective system for producing isotope-enriched RCL. It should also be potential for producing other (2)H, (13)C, (15)N-enriched, Ile (δ1), Leu, Val methyl-protonated eukaryotic proteins with native disulfide bonds.


Subject(s)
Lipase/chemistry , Lipase/metabolism , Rhizopus/enzymology , Carbon Isotopes/metabolism , Deuterium/metabolism , Disulfides/chemistry , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glycosylation , Isotope Labeling , Lipase/genetics , Nitrogen Isotopes/metabolism , Pichia/genetics , Pichia/metabolism , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhizopus/chemistry
15.
Protein Sci ; 25(1): 30-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26293815

ABSTRACT

We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development.


Subject(s)
Crystallography, X-Ray , Databases, Protein , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Protein Conformation , Proteins/chemistry
16.
Mol Med ; 21: 526-35, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26101955

ABSTRACT

Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.


Subject(s)
Aspirin/pharmacology , HMGB1 Protein/genetics , Inflammation/genetics , Salicylic Acid/pharmacology , Aspirin/chemistry , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , HMGB1 Protein/biosynthesis , HMGB1 Protein/chemistry , Humans , Inflammation/drug therapy , Inflammation/pathology , Mutation , Nuclear Magnetic Resonance, Biomolecular , Salicylic Acid/chemistry
17.
Nucleic Acids Res ; 42(9): 5917-28, 2014 May.
Article in English | MEDLINE | ID: mdl-24623816

ABSTRACT

We report alterations to the murine leukemia virus (MLV) integrase (IN) protein that successfully result in decreasing its integration frequency at transcription start sites and CpG islands, thereby reducing the potential for insertional activation. The host bromo and extraterminal (BET) proteins Brd2, 3 and 4 interact with the MLV IN protein primarily through the BET protein ET domain. Using solution NMR, protein interaction studies, and next generation sequencing, we show that the C-terminal tail peptide region of MLV IN is important for the interaction with BET proteins and that disruption of this interaction through truncation mutations affects the global targeting profile of MLV vectors. The use of the unstructured tails of gammaretroviral INs to direct association with complexes at active promoters parallels that used by histones and RNA polymerase II. Viruses bearing MLV IN C-terminal truncations can provide new avenues to improve the safety profile of gammaretroviral vectors for human gene therapy.


Subject(s)
Integrases/chemistry , Leukemia Virus, Murine/genetics , RNA-Binding Proteins/chemistry , Viral Proteins/chemistry , Virus Integration , Amino Acid Sequence , Binding Sites , CpG Islands , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs , Sequence Analysis, DNA , Sequence Deletion , Transcription Factors , Transcription Initiation Site
18.
Structure ; 22(4): 515-525, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24582435

ABSTRACT

Nonstructural protein 1 of influenza A virus (NS1A) is a conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply (19)F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the (19)F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. (19)F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. (19)F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection.


Subject(s)
Influenza A Virus, H3N2 Subtype/chemistry , Molecular Dynamics Simulation , RNA, Double-Stranded/chemistry , Tryptophan/analogs & derivatives , Viral Nonstructural Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorine-19 Magnetic Resonance Imaging , Gene Expression , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Tryptophan/chemistry , Viral Nonstructural Proteins/genetics
19.
J Struct Funct Genomics ; 13(3): 163-70, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22843344

ABSTRACT

Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family.


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Protein Folding , Staphylococcus aureus/chemistry , Amino Acid Motifs , Amino Acid Sequence , Bacillus subtilis/classification , Bacillus subtilis/genetics , Bacterial Proteins/classification , Bacterial Proteins/genetics , Cloning, Molecular , Crystallography, X-Ray , Genes, Bacterial , Magnetic Resonance Spectroscopy/methods , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Species Specificity , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , Structure-Activity Relationship
20.
J Biomol NMR ; 52(4): 303-13, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22389115

ABSTRACT

A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS(2)) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS(2)-tag is replaced with non-isotope labeled PrS(2)-tag, silencing the NMR signals from PrS(2)-tag in isotope-filtered (1)H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS(2)-tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS(2) (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS(2)-tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS(2)-tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone (1)H, (15)N and (13)C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear (1)H-(15)N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.


Subject(s)
Isotope Labeling/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Protein S/metabolism , Proteins/chemistry , Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Protein Conformation , Protein S/genetics , Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...