Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 19(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356819

ABSTRACT

In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aplysia , Lectins/pharmacology , Animals , Aquatic Organisms , Eggs , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
2.
Mar Drugs ; 17(9)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466257

ABSTRACT

MytiLec-1, a 17 kDa lectin with ß-trefoil folding that was isolated from the Mediterranean mussel (Mytilus galloprovincialis) bound to the disaccharide melibiose, Galα(1,6) Glc, and the trisaccharide globotriose, Galα(1,4) Galß(1,4) Glc. Toxicity of the lectin was found to be low with an LC50 value of 384.53 µg/mL, determined using the Artemia nauplii lethality assay. A fluorescence assay was carried out to evaluate the glycan-dependent binding of MytiLec-1 to Artemia nauplii. The lectin strongly agglutinated Ehrlich ascites carcinoma (EAC) cells cultured in vivo in Swiss albino mice. When injected intraperitoneally to the mice at doses of 1.0 mg/kg/day and 2.0 mg/kg/day for five consecutive days, MytiLec-1 inhibited 27.62% and 48.57% of cancer cell growth, respectively. Antiproliferative activity of the lectin against U937 and HeLa cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro in RPMI-1640 medium. MytiLec-1 internalized into U937 cells and 50 µg/mL of the lectin inhibited their growth of to 62.70% whereas 53.59% cell growth inhibition was observed against EAC cells when incubated for 24 h. Cell morphological study and expression of apoptosis-related genes (p53, Bax, Bcl-X, and NF-κB) showed that the lectin possibly triggered apoptosis in these cells.


Subject(s)
Biological Products/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Disaccharides/pharmacology , Lectins/pharmacology , Mytilus/chemistry , Trisaccharides/pharmacology , Animals , Apoptosis/drug effects , Artemia/drug effects , Biological Products/chemistry , Biological Products/therapeutic use , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Disaccharides/chemistry , Disaccharides/therapeutic use , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Injections, Intraperitoneal , Lectins/chemistry , Lectins/therapeutic use , Melibiose/chemistry , Mice , Toxicity Tests , Trisaccharides/chemistry , Trisaccharides/therapeutic use , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...