Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1087343, 2023.
Article in English | MEDLINE | ID: mdl-36959939

ABSTRACT

The continuing decline in water resources under the ever-changing climate compels us to re-orient our focus to a more sustainable practice. This study investigates the performance of Triticum aestivum wheat genotypes viz. HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under well- and deficit-watered conditions for their root-traits, biomass and nitrogen accumulation and remobilization, and water use efficiencies, grown in PVC-tubes. The genotypes HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under well-watered (WW) resulted in 36, 35, 38, 33, and 42% more grain yield compared to deficit-watered (DW). Among the genotypes, HD-3249 had the highest grain yield under both well- and deficit-watered conditions. Compared to DW, the WW had 28%, 30%, and 28% greater root length, biomass, and root length density at flowering {102 days (d), Z61}, while among the genotypes, HD-3249 had relatively greater root-traits. At flowering (Z61) and maturity (132 d, Z89), genotypes under WW accumulated 30-46% and 30-53%, respectively greater shoot biomass over the DW. Furthermore, the shoot biomass remobilised for HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under the WW was 32, 37, 39, 35, and 35% greater than the DW. The nitrogen partitioning to different plant parts at flowering (Z61) and maturity (Z89) was significantly greater with the WW than with DW. The total nitrogen- remobilized and contribution to grain-N under the WW was 55, 58, 52, 53, 58% and 9, 19, 15, 17, 17% greater than the DW for the genotypes HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226. The irrigation water use efficiency (WUE) at flowering (Z61) was more under the deficit-watered, but the biomass and grain total WUE was improved with the well-watered condition. Hence, it is apparent that proper scheduling of irrigation and N applications, along with the adoption of a genotype suited to a particular environment, will result in better WUE and grain yields, along with better utilization of scarce resources.

2.
Sci Rep ; 13(1): 1688, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717658

ABSTRACT

Delayed sowing of maize hybrids could exacerbate the capability of maximizing the yield potential through poor crop stand, root proliferation, nutrient uptake, and dry matter accumulation coupled with the inadequate partitioning of the assimilates. This study appraised the performance of five recent maize hybrids viz., PMH-1, PJHM-1, AH-4158, AH-4271, and AH-8181 under timely and late sown conditions of the irrigated semi-arid ecologies. Timely sowing had the grain and stover yields advantage of 16-19% and 12-25%, respectively over the late sown maize hybrids. The advanced hybrids AH-4271 and AH-4158 had higher grain yields than the others. During the post-anthesis period, a greater dry matter accumulation and contribution to the grain yield to the tune of 16% and 10.2%, respectively, was observed under timely sown conditions. Furthermore, the nutrient acquisition and use efficiencies also improved under the timely sown. The nutrient and dry matter remobilization varied among the hybrids with AH-4271 and PMH-1 registering greater values. The grain yield stability index (0.85) was highest with AH-4158 apart from the least yield reduction (15.2%) and stress susceptibility index (0.81), while the maximum geometric mean productivity was recorded with the AH-4271 (5.46 Mg ha-1). The hybrids AH-4271 and PJHM-1 exhibited improved root morphological traits, such as root length, biomass, root length density, root volume at the V5 stage (20 days after sowing, DAS) and 50% flowering (53 DAS). It is thus evident that the timely sowing and appropriate hybrids based on stress tolerance indices resulted in greater yields and better utilization of resources.


Subject(s)
Crop Production , Zea mays , Edible Grain , Biomass
3.
Front Plant Sci ; 13: 975569, 2022.
Article in English | MEDLINE | ID: mdl-36212325

ABSTRACT

Photosynthesis, crop health and dry matter partitioning are among the most important factors influencing crop productivity and quality. Identifying variation in these parameters may help discover the plausible causes for crop productivity differences under various management practices and cropping systems. Thus, a 2-year (2019-2020) study was undertaken to investigate how far the integrated crop management (ICM) modules and cropping systems affect maize physiology, photosynthetic characteristics, crop vigour and productivity in a holistic manner. The treatments included nine main-plot ICM treatments [ICM1 to ICM4 - conventional tillage (CT)-based; ICM5 to ICM8 - conservation agriculture (CA)-based; ICM9 - organic agriculture (OA)-based] and two cropping systems, viz., maize-wheat and maize + blackgram-wheat in subplots. The CA-based ICM module, ICM7 resulted in significant (p < 0.05) improvements in the physiological parameters, viz., photosynthetic rate (42.56 µ mol CO2 m-2 sec-1), transpiration rate (9.88 m mol H2O m-2 sec-1) and net assimilation rate (NAR) (2.81 mg cm-2 day-1), crop vigour [NDVI (0.78), chlorophyll content (53.0)], dry matter partitioning toward grain and finally increased maize crop productivity (6.66 t ha-1) by 13.4-14.2 and 27.3-28.0% over CT- and OA-based modules. For maize equivalent grain yield (MEGY), the ICM modules followed the trend as ICM7 > ICM8 > ICM5 > ICM6 > ICM3 > ICM4 > ICM1 > ICM2 > ICM9. Multivariate and PCA analyses also revealed a positive correlation between physiological parameters, barring NAR and both grain and stover yields. Our study proposes an explanation for improved productivity of blackgram-intercropped maize under CA-based ICM management through significant improvements in physiological and photosynthetic characteristics and crop vigour. Overall, the CA-based ICM module ICM7 coupled with the maize + blackgram intercropping system could be suggested for wider adoption to enhance the maize production in semiarid regions of India and similar agroecologies across the globe.

4.
Sci Rep ; 12(1): 1962, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121787

ABSTRACT

Field experiments were conducted to evaluate eight different integrated crop management (ICM) modules for 5 years in a maize-wheat rotation (MWR); wherein, ICM1&2-'business-as-usual' (conventional flatbed maize and wheat, ICM3&4-conventional raised bed (CTRB) maize and wheat without residues, ICM5&6-conservation agriculture (CA)-based zero-till (ZT) flatbed maize and wheat with the residues, and ICM7&8- CA-based ZT raised bed maize and wheat with the residues. Results indicated that the ICM7&8 produced significantly (p < 0.05) the highest maize grain yield (5 years av.) which was 7.8-21.3% greater than the ICM1-6. However, across years, the ICM5-8 gave a statistically similar wheat grain yield and was 8.4-11.5% greater than the ICM1-4. Similarly, the CA-based residue retained ICM5-8 modules had given 9.5-14.3% (5 years av.) greater system yields in terms of maize grain equivalents (MGEY) over the residue removed CT-based ICM1&4. System water productivity (SWP) was the highest with ICM5-8, being 10.3-17.8% higher than the ICM1-4. Nevertheless, the highest water use (TWU) was recorded in the CT flatbed (ICM1&2), ~ 7% more than the raised bed and ZT planted crops with or without the residues (ICM4-8). Furthermore, the ICM1-4 had produced 9.54% greater variable production costs compared to the ICM5-8, whereas, the ICM5-8 gave 24.3-27.4% additional returns than the ICM1-4. Also, different ICM modules caused significant (p < 0.05) impacts on the soil properties, such as organic carbon (SOC), microbial biomass carbon (SMBC), dehydrogenase (SDH), alkaline phosphatase (SAP), and urease (URE) activities. In 0.0-0.15 m soil profile, residue retained CA-based (ICM5-8) modules registered a 7.1-14.3% greater SOC and 10.2-17.3% SMBC than the ICM1-4. The sustainable yield index (SYI) of MWR was 13.4-18.6% greater under the ICM7&8 compared to the ICM1-4. Hence, this study concludes that the adoption of the CA-based residue retained ICMs in the MWR could sustain the crop yields, enhance farm profits, save water and improve soil properties of the north-western plans of India.

5.
World J Microbiol Biotechnol ; 37(10): 167, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34468874

ABSTRACT

Rhizosphere microbial communities are dynamic and play a crucial role in diverse biochemical processes and nutrient cycling. Soil type and cultivar modulate the composition of rhizosphere microbial communities. Changes in the community composition significantly alter microbial function and ecological process. We examined the influence of soil type on eubacterial and diazotrophic community abundance and microbial metabolic potential in chickpea (cv. BG 372 and cv. BG 256) rhizosphere. The total eubacterial and diazotrophic community as estimated through 16 S rDNA and nifH gene copy numbers using qPCR showed the soil type influence with clear rhizosphere effect on gene abundance. PLFA study has shown the variation in microbial community structure with different soil types. Differential influence of soil types and cultivar on the ratio of Gram positive to Gram negative bacteria was observed with most rhizosphere soils corresponding to higher ratios than bulk soil. The rhizosphere microbial activities (urease, dehydrogenase, alkaline phosphatase and beta-glucosidase) were also assessed as an indicator of microbial metabolic diversity. Principal component analysis and K-means non-hierarchical cluster mapping grouped soils into three categories, each having different soil enzyme activity or edaphic drivers. Soil type and cultivar influence on average substrate utilization pattern analyzed through community level physiological profiling (CLPP) was higher for rhizosphere soils than bulk soils. The soil nutrient studies revealed that both soil type and cultivar influenced the available N, P, K and organic carbon content of rhizosphere soil. Our study signifies that soil type and cultivar jointly influenced soil microbial community abundance and their metabolic potential in chickpea rhizosphere.


Subject(s)
Bacteria/metabolism , Cicer/growth & development , Nutrients/metabolism , Soil Microbiology , Soil/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cicer/microbiology , Microbiota , Nitrogen Fixation , Nutrients/analysis , Phylogeny , Rhizosphere
6.
Plants (Basel) ; 9(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213067

ABSTRACT

Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR-plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.

7.
Front Microbiol ; 11: 1869, 2020.
Article in English | MEDLINE | ID: mdl-32903828

ABSTRACT

Microbacterium species have been isolated from a wide range of hosts and environments, including heavy metal-contaminated sites. Here, we present a comprehensive analysis on the phylogenetic distribution and the genetic potential of 70 Microbacterium belonging to 20 different species isolated from heavy metal-contaminated and non-contaminated sites with particular attention to secondary metabolites gene clusters. The analyzed Microbacterium species are divided in three main functional clades. They share a small core genome (331 gene families covering basic functions) pointing to high genetic diversity. The most common secondary metabolite gene clusters encode pathways for the production of terpenoids, type III polyketide synthases and non-ribosomal peptide synthetases, potentially responsible of the synthesis of siderophore-like compounds. In vitro tests showed that many Microbacterium strains produce siderophores, ACC deaminase, auxins (IAA) and are able to solubilize phosphate. Microbacterium isolates from heavy metal contaminated sites are on average more resistant to heavy metals and harbor more genes related to metal homeostasis (e.g., metalloregulators). On the other hand, the ability to increase the metal mobility in a contaminated soil through the secretion of specific molecules seems to be widespread among all. Despite the widespread capacity of strains to mobilize several metals, plants inoculated with selected Microbacterium isolates showed only slightly increased iron concentrations, whereas concentrations of zinc, cadmium and lead were decreased.

8.
World J Microbiol Biotechnol ; 36(3): 44, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32130544

ABSTRACT

The present study is an attempt to understand the impact of bioinoculants, Azotobacter chroococcum (A), Bacillus megaterium (B), Pseudomonas fluorescens (P), on (a) soil and plant nutrient status, (b) total resident and active bacterial communities, and (c) genes and transcripts involved in nitrogen cycle, during cultivation of Cajanus cajan. In terms of available macro- and micro-nutrients, triple inoculation of the bioinoculants (ABP) competed well with chemical fertilizer (CF). Their 'non-target' effects were assessed in terms of the abundance and activity of the resident bacterial community by employing denaturing gradient gel electrophoresis (DGGE). The resident bacterial community (16S rRNA gene) was stable, while the active fraction (16S rRNA transcripts) was influenced (in terms of abundance) by the treatments. Quantification of the genes and transcripts involved in N cycle by qPCR revealed an increase in the transcripts of nifH in the soil treated with ABP over CF, with an enhancement of 3.36- and 1.57- fold at flowering and maturity stages of plant growth, respectively. The bioinoculants shaped the resident microflora towards a more beneficial community, which helped in increasing soil N turnover and hence, soil fertility as a whole.


Subject(s)
Azotobacter/growth & development , Bacillus megaterium/growth & development , Cajanus/growth & development , Pseudomonas fluorescens/growth & development , Cajanus/genetics , Cajanus/microbiology , Fertilizers/analysis , Gene Expression Regulation, Plant , Microbiota , Nitrogen Cycle , Plant Proteins/genetics , Rhizosphere , Soil Microbiology
9.
Genome Announc ; 5(40)2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28982991

ABSTRACT

Pseudomonas stutzeri strain KMS 55 (MTCC 12703) is an isolate from the root tissues of rice (Oryza sativa L.) that displays a high biological nitrogen fixation ability. Here, we report the complete genome sequence of this strain, which contains 4,637,820 bp, 4,289 protein-coding genes, 5,006 promoter sequences, 62 tRNAs, a single copy of 5S-16S-23S rRNA, and a genome average GC content of 51.18%. Analysis of the ~4.64-Mb genome sequence will give support to increased understanding of the genetic determinants of host range, endophytic colonization behavior, endophytic nitrogen fixation, and other plant-beneficial roles of Pseudomonas stutzeri.

SELECTION OF CITATIONS
SEARCH DETAIL
...