Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Elife ; 122023 04 18.
Article in English | MEDLINE | ID: mdl-37070964

ABSTRACT

Archaeological cobs from Paredones and Huaca Prieta (Peru) represent some of the oldest maize known to date, yet they present relevant phenotypic traits corresponding to domesticated maize. This contrasts with the earliest Mexican macro-specimens from Guila Naquitz and San Marcos, which are phenotypically intermediate for these traits, even though they date more recently in time. To gain insights into the origins of ancient Peruvian maize, we sequenced DNA from three Paredones specimens dating ~6700-5000 calibrated years before present (BP), conducting comparative analyses with two teosinte subspecies (Zea mays ssp. mexicana and parviglumis) and extant maize, that include highland and lowland landraces from Mesoamerica and South America. We show that Paredones maize originated from the same domestication event as Mexican maize and was domesticated by ~6700 BP, implying rapid dispersal followed by improvement. Paredones maize shows no relevant gene flow from mexicana, smaller than that observed in teosinte parviglumis. Thus, Paredones samples represent the only maize without confounding mexicana variation found to date. It also harbors significantly fewer alleles previously found to be adaptive to highlands, but not of alleles adaptive to lowlands, supporting a lowland migration route. Our overall results imply that Paredones maize originated in Mesoamerica, arrived in Peru without mexicana introgression through a rapid lowland migration route, and underwent improvements in both Mesoamerica and South America.


The plant we know today as maize or corn began its story 9,000 years ago in modern-day Mexico, when farmers of the Balsas River basin started to carefully breed its ancestor, the wild grass teosinte parviglumis. Recent discoveries suggest the crop may have started to travel to South America before its domestication was fully complete, leading to a complex history of semi-tamed lineages evolving in parallel in different regions. For example, 5,300-year-old corn specimens found in Tehuacán, in central Mexico, still genetically and morphologically resemble teosinte. Meanwhile, cobs harvested about 6,700 to 5,000 years ago on the northern coast of Peru ­ 3800km away from where maize was first domesticated ­ look like the ones we know today. Vallebueno-Estrada et al. aimed to explore the evolutionary history of this Peruvian maize, which was discovered at the archaeological coastal site of Paredones. To do so, they extracted and sequenced its genetic information, and compared these sequences with those from modern varieties of lowland and highland maize, as well as from teosinte parviglumis and teosinte mexicana. The analyses showed that the ancestor of the Paredones maize emerged from teosinte parviglumis like any other lineage, but that it was already domesticated when it started to spread South; by the time it was present in Peru 6,700 years ago, it was genetically closer to modern-day crops. This early departure is consistent with the fact that the Paredones specimens lacked teosinte mexicana genetic variants; this highland relative of lowland parviglumis is believed to have interbred with maize lineages from Central America more recently, when these were brought to higher altitudes. The presence of genetic marks tailored to low-elevation regions suggested that the Paredones maize lineage migrated through a coastal corridor connecting Central and South America, arriving in northern Peru about 2,500 years after first arising from teosinte parviglumis in Central America around 9,000 years ago. Under the care of rapidly developing Central Andean societies, the crop then evolved to adapt to its local conditions. Maize today has spread to all continents besides Antarctica; we produce more of it than wheat, rice or any other grain. How our modern varieties will adapt to the environmental constraints brought by climate change remains unclear. By peering into the history of maize, Vallebueno-Estrada et al. hope to find genetic variations which could inform new breeding strategies that improve the future of this crop.


Subject(s)
Domestication , Zea mays , Peru , Zea mays/genetics , South America , Mexico
3.
Heredity (Edinb) ; 126(6): 929-941, 2021 06.
Article in English | MEDLINE | ID: mdl-33888874

ABSTRACT

Domesticates are an excellent model for understanding biological consequences of rapid climate change. Maize (Zea mays ssp. mays) was domesticated from a tropical grass yet is widespread across temperate regions today. We investigate the biological basis of temperate adaptation in diverse structured nested association mapping (NAM) populations from China, Europe (Dent and Flint) and the United States as well as in the Ames inbred diversity panel, using days to flowering as a proxy. Using cross-population prediction, where high prediction accuracy derives from overall genomic relatedness, shared genetic architecture, and sufficient diversity in the training population, we identify patterns in predictive ability across the five populations. To identify the source of temperate adapted alleles in these populations, we predict top associated genome-wide association study (GWAS) identified loci in a Random Forest Classifier using independent temperate-tropical North American populations based on lines selected from Hapmap3 as predictors. We find that North American populations are well predicted (AUC equals 0.89 and 0.85 for Ames and USNAM, respectively), European populations somewhat well predicted (AUC equals 0.59 and 0.67 for the Dent and Flint panels, respectively) and that the Chinese population is not predicted well at all (AUC is 0.47), suggesting an independent adaptation process for early flowering in China. Multiple adaptations for the complex trait days to flowering in maize provide hope for similar natural systems under climate change.


Subject(s)
Adaptation, Physiological , Flowers/physiology , Zea mays , Adaptation, Physiological/genetics , Alleles , Genetic Association Studies , Zea mays/genetics , Zea mays/physiology
4.
Nat Commun ; 12(1): 1227, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623026

ABSTRACT

Sweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets. The ten pseudochromosomes cover 92% of the total assembly and 99% of the estimated genome size, with a scaffold N50 of 222.2 Mb. This reference genome completely assembles the large structural variation that created the mutant sh2-R allele. Furthermore, comparative genomics analysis with six field corn genomes highlights differences in single-nucleotide polymorphisms, structural variations, and transposon composition. Phylogenetic analysis of 5,381 diverse maize and teosinte accessions reveals genetic relationships between sweet corn and other types of maize. Our results show evidence for a common origin in northern Mexico for modern sweet corn in the U.S. Finally, population genomic analysis identifies regions of the genome under selection and candidate genes associated with sweet corn traits, such as early flowering, endosperm composition, plant and tassel architecture, and kernel row number. Our study provides a high-quality reference-genome sequence to facilitate comparative genomics, functional studies, and genomic-assisted breeding for sweet corn.


Subject(s)
Evolution, Molecular , Genetics, Population , Genome, Plant , Zea mays/genetics , Alleles , DNA Transposable Elements/genetics , Genetic Loci , Haplotypes/genetics , Molecular Sequence Annotation , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, DNA , Zea mays/anatomy & histology
5.
Plant J ; 103(3): 1246-1255, 2020 08.
Article in English | MEDLINE | ID: mdl-32349163

ABSTRACT

Genome-wide association (GWA) studies can identify quantitative trait loci (QTL) putatively underlying traits of interest, and nested association mapping (NAM) can further assess allelic series. Near-isogenic lines (NILs) can be used to characterize, dissect and validate QTL, but the development of NILs is costly. Previous studies have utilized limited numbers of NILs and introgression donors. We characterized a panel of 1270 maize NILs derived from crosses between 18 diverse inbred lines and the recurrent inbred parent B73, referred to as the nested NILs (nNILs). The nNILs were phenotyped for flowering time, height and resistance to three foliar diseases, and genotyped with genotyping-by-sequencing. Across traits, broad-sense heritability (0.4-0.8) was relatively high. The 896 genotyped nNILs contain 2638 introgressions, which span the entire genome with substantial overlap within and among allele donors. GWA with the whole panel identified 29 QTL for height and disease resistance with allelic variation across donors. To date, this is the largest and most diverse publicly available panel of maize NILs to be phenotypically and genotypically characterized. The nNILs are a valuable resource for the maize community, providing an extensive collection of introgressions from the founders of the maize NAM population in a B73 background combined with data on six agronomically important traits and from genotyping-by-sequencing. We demonstrate that the nNILs can be used for QTL mapping and allelic testing. The majority of nNILs had four or fewer introgressions, and could readily be used for future fine mapping studies.


Subject(s)
Zea mays/genetics , Crosses, Genetic , Disease Resistance/genetics , Genetic Association Studies , Genetic Introgression/genetics , Genome-Wide Association Study , Plant Breeding , Quantitative Trait Loci/genetics , Zea mays/anatomy & histology , Zea mays/growth & development , Zea mays/metabolism
6.
PLoS Genet ; 14(5): e1007162, 2018 05.
Article in English | MEDLINE | ID: mdl-29746459

ABSTRACT

While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes.


Subject(s)
Evolution, Molecular , Genome Size , Genome, Plant/genetics , Zea mays/genetics , Adaptation, Physiological/genetics , Altitude , Central America , Genetic Variation , Geography , In Situ Hybridization, Fluorescence , Repetitive Sequences, Nucleic Acid/genetics , Selection, Genetic , South America , Species Specificity , Zea mays/classification
7.
Nature ; 555(7697): 520-523, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539638

ABSTRACT

Here we report a multi-tissue gene expression resource that represents the genotypic and phenotypic diversity of modern inbred maize, and includes transcriptomes in an average of 255 lines in seven tissues. We mapped expression quantitative trait loci and characterized the contribution of rare genetic variants to extremes in gene expression. Some of the new mutations that arise in the maize genome can be deleterious; although selection acts to keep deleterious variants rare, their complete removal is impeded by genetic linkage to favourable loci and by finite population size. Modern maize breeders have systematically reduced the effects of this constant mutational pressure through artificial selection and self-fertilization, which have exposed rare recessive variants in elite inbred lines. However, the ongoing effect of these rare alleles on modern inbred maize is unknown. By analysing this gene expression resource and exploiting the extreme diversity and rapid linkage disequilibrium decay of maize, we characterize the effect of rare alleles and evolutionary history on the regulation of expression. Rare alleles are associated with the dysregulation of expression, and we correlate this dysregulation to seed-weight fitness. We find enrichment of ancestral rare variants among expression quantitative trait loci mapped in modern inbred lines, which suggests that historic bottlenecks have shaped regulation. Our results suggest that one path for further genetic improvement in agricultural species lies in purging the rare deleterious variants that have been associated with crop fitness.


Subject(s)
Alleles , Gene Expression Regulation, Plant/genetics , Genetic Fitness/genetics , Zea mays/genetics , Crops, Agricultural/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genotype , Linkage Disequilibrium , Phenotype , Population Density , Quantitative Trait Loci/genetics , RNA, Plant/genetics , Seeds/genetics , Sequence Analysis, RNA
8.
Science ; 357(6350): 512-515, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28774930

ABSTRACT

By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.


Subject(s)
Acclimatization/genetics , Zea mays/genetics , Zea mays/physiology , Cold Temperature , Flowers/genetics , Flowers/physiology , Genome, Plant , Genomics , Multifactorial Inheritance , North America , Phenotype
10.
Nat Genet ; 49(3): 476-480, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28166212

ABSTRACT

Landraces (traditional varieties) of domesticated species preserve useful genetic variation, yet they remain untapped due to the genetic linkage between the few useful alleles and hundreds of undesirable alleles. We integrated two approaches to characterize the diversity of 4,471 maize landraces. First, we mapped genomic regions controlling latitudinal and altitudinal adaptation and identified 1,498 genes. Second, we used F-one association mapping (FOAM) to map the genes that control flowering time, across 22 environments, and identified 1,005 genes. In total, we found that 61.4% of the single-nucleotide polymorphisms (SNPs) associated with altitude were also associated with flowering time. More than half of the SNPs associated with altitude were within large structural variants (inversions, centromeres and pericentromeric regions). The combined mapping results indicate that although floral regulatory network genes contribute substantially to field variation, over 90% of the contributing genes probably have indirect effects. Our dual strategy can be used to harness the landrace diversity of plants and animals.


Subject(s)
Adaptation, Physiological/genetics , Flowers/genetics , Polymorphism, Single Nucleotide/genetics , Zea mays/genetics , Acclimatization/genetics , Alleles , Chromosome Mapping/methods , Genetic Linkage/genetics , Genotype , Phenotype
11.
Genetics ; 200(4): 1297-312, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26078279

ABSTRACT

Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize.


Subject(s)
Adaptation, Physiological/genetics , Zea mays/genetics , Zea mays/physiology , Acclimatization/genetics , Evolution, Molecular , Genetic Loci/genetics , Genetic Variation , Genomics , Haplotypes , Models, Biological , Mutation , Phenotype , Polymorphism, Single Nucleotide
12.
Genome Biol ; 14(6): R55, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23759205

ABSTRACT

BACKGROUND: Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world. RESULTS: The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits. CONCLUSIONS: The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.


Subject(s)
Breeding , Genome, Plant , Genotype , Seeds/genetics , Zea mays/genetics , Alleles , Biological Specimen Banks , Chromosome Mapping , Genetic Markers , High-Throughput Nucleotide Sequencing , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Seeds/classification , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...