Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(16): 167003, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387624

ABSTRACT

We have examined the intrinsic spin-orbit coupling and orbital depairing in thin films of Nb-doped SrTiO_{3} by superconducting tunneling spectroscopy. The orbital depairing is geometrically suppressed in the two-dimensional limit, enabling a quantitative evaluation of the Fermi level spin-orbit scattering using Maki's theory. The response of the superconducting gap under in-plane magnetic fields demonstrates short spin-orbit scattering times τ_{so}≤1.1 ps. Analysis of the orbital depairing indicates that the heavy electron band contributes significantly to pairing. These results suggest that the intrinsic spin-orbit scattering time in SrTiO_{3} is comparable to those associated with Rashba effects in SrTiO_{3} interfacial conducting layers and can be considered significant in all forms of superconductivity in SrTiO_{3}.

2.
Nat Commun ; 9(1): 4008, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275443

ABSTRACT

Quantum ground states that arise at atomically controlled oxide interfaces provide an opportunity to address key questions in condensed matter physics, including the nature of two-dimensional metallic behaviour often observed adjacent to superconductivity. At the superconducting LaAlO3/SrTiO3 interface, a metallic ground state emerges upon the collapse of superconductivity with field-effect gating and is accompanied with a pseudogap. Here we utilize independent control of carrier density and disorder of the interfacial superconductor using dual electrostatic gates, which enables the comprehensive examination of the electronic phase diagram approaching zero temperature. We find that the pseudogap corresponds to precursor pairing, and the onset of long-range phase coherence forms a two-dimensional superconducting dome as a function of the dual-gate voltages. The gate-tuned superconductor-metal transitions are driven by macroscopic phase fluctuations of Josephson coupled superconducting puddles.

3.
Nat Commun ; 9(1): 4570, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374115

ABSTRACT

The original HTML version of this Article omitted to list Harold Y. Hwang as a corresponding author and incorrectly listed Adrian G. Swartz as a corresponding author. This has been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

4.
Proc Natl Acad Sci U S A ; 115(7): 1475-1480, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29382769

ABSTRACT

The nature of superconductivity in the dilute semiconductor SrTiO3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm-3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.

5.
Nano Lett ; 13(7): 3106-10, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23746085

ABSTRACT

MoS2 and related metal dichalcogenides (MoSe2, WS2, WSe2) are layered two-dimensional materials that are promising for nanoelectronics and spintronics. For instance, large spin-orbit coupling and spin splitting in the valence band of single layer (SL) MoS2 could lead to enhanced spin lifetimes and large spin Hall angles. Understanding the nature of the contacts is a critical first step for realizing spin injection and spin transport in MoS2. Here, we have investigated Co contacts to SL MoS2 and find that the Schottky barrier height can be significantly decreased with the addition of a thin oxide barrier (MgO). Further, we show that the barrier height can be reduced to zero by tuning the carrier density with back gate. Therefore, the MgO could simultaneously provide a tunnel barrier to alleviate conductance mismatch while minimizing carrier depletion near the contacts. Such control over the barrier height should allow for careful engineering of the contacts to realize spin injection in these materials.

6.
Phys Rev Lett ; 109(18): 186604, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215308

ABSTRACT

Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin transport measurements on graphene spin valves exhibit a dip in the nonlocal spin signal as a function of the applied magnetic field, which is due to scattering (relaxation) of pure spin currents by exchange coupling to the magnetic moments. Furthermore, Hanle spin precession measurements indicate the presence of an exchange field generated by the magnetic moments. The entire experiment including spin transport is performed in an ultrahigh vacuum chamber, and the characteristic signatures of magnetic moment formation appear only after hydrogen adatoms are introduced. Lattice vacancies also demonstrate similar behavior indicating that the magnetic moment formation originates from p(z)-orbital defects.

7.
ACS Nano ; 6(11): 10063-9, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23083411

ABSTRACT

We have demonstrated the deposition of EuO films on graphene by reactive molecular beam epitaxy in a special adsorption-controlled and oxygen-limited regime, which is a critical advance toward the realization of the exchange proximity interaction (EPI). It has been predicted that when the ferromagnetic insulator (FMI) EuO is brought into contact with graphene, an overlap of electronic wave functions at the FMI/graphene interface can induce a large spin splitting inside the graphene. Experimental realization of this effect could lead to new routes for spin manipulation, which is a necessary requirement for a functional spin transistor. Furthermore, EPI could lead to novel spintronic behavior such as controllable magnetoresistance, gate tunable exchange bias, and quantized anomalous Hall effect. However, experimentally, EuO has not yet been integrated onto graphene. Here we report the successful growth of high-quality crystalline EuO on highly oriented pyrolytic graphite and single-layer graphene. The epitaxial EuO layers have (001) orientation and do not induce an observable D peak (defect) in the Raman spectra. Magneto-optic measurements indicate ferromagnetism with a Curie temperature of 69 K, which is the value for bulk EuO. Transport measurements on exfoliated graphene before and after EuO deposition indicate only a slight decrease in mobility.


Subject(s)
Crystallization/methods , Europium/chemistry , Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Macromolecular Substances/chemistry , Magnetic Fields , Materials Testing , Molecular Conformation , Oxides/chemistry , Particle Size , Surface Properties
8.
Nano Lett ; 12(7): 3443-7, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22725628

ABSTRACT

Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm(2)/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.

SELECTION OF CITATIONS
SEARCH DETAIL
...