Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Radiat Res ; 201(5): 440-448, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38714319

ABSTRACT

The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.


Subject(s)
Acute Radiation Syndrome , Radioactive Hazard Release , Triage , Humans , Acute Radiation Syndrome/etiology , Risk Assessment , Triage/methods , Radiometry/methods
2.
Mol Imaging Biol ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177616

ABSTRACT

Within this special issue, many eminent investigators report on measurements of oxygen (O2) levels in tissues. Given the complexities of spatial and temporal heterogeneities of O2 in tissues and its many sources, this commentary draws attention to what such measurements do and do not actually assess regarding O2 levels in tissues. Given this limitation, it also discusses how these results can be used most effectively. To provide a convenient mechanism to discuss these issues more fully, this analysis focuses on measurements using EPR oximetry, but these considerations apply to all other techniques. The nature of the delivery of O2 to tissues and the mechanisms by which O2 is consumed necessarily result in very different levels of O2 within the volume of each voxel of a measurement. Better spatial resolution cannot fully resolve the problem because the variations include O2 gradients within each cell. Improved resolution of the time-dependent variation in O2 is also very challenging because O2 levels within tissues can have fluctuations of O2 levels in the range of milliseconds, while most methods require longer times to acquire the data from each voxel. Based on these issues, we argue that the values obtained inevitably are complex aggregates of averages of O2 levels across space and time in the tissue. These complexities arise from the complex physiology of tissues and are compounded by the limitations of the technique and its ability to acquire data. However, one often can obtain very meaningful and useful results if these complexities and limitations are taken into account. We illustrate this, using results obtained with in vivo EPR oximetry, especially utilizing its capacity to make repeated measurements to follow changes in O2 levels that occur with interventions and/or over time.

3.
Int J Radiat Oncol Biol Phys ; 119(1): 292-301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38072322

ABSTRACT

PURPOSE: Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS: A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS: Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS: This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.


Subject(s)
Tooth , Humans , Electron Spin Resonance Spectroscopy/methods , Tooth/chemistry , Tooth/radiation effects , Whole-Body Irradiation , Radiometry/methods , Radiation Dosage
5.
Adv Exp Med Biol ; 1438: 127-133, 2023.
Article in English | MEDLINE | ID: mdl-37845451

ABSTRACT

The aim of this review is to stimulate readers to undertake appropriate investigations of the mechanism for a possible oxygen effect in FLASH. FLASH is a method of delivery of radiation that empirically, in animal models, appears to decrease the impact of radiation on normal tissues while retaining full effect on tumors. This has the potential for achieving a significantly increased effectiveness of radiation therapy. The mechanism is not known but, especially in view of the prominent role that oxygen has in the effects of radiation, investigations of mechanisms of FLASH have often focused on impacts of FLASH on oxygen levels. We and others have previously shown that simple differential depletion of oxygen directly changing the response to radiation is not a likely mechanism. In this review we consider how time-varying changes in oxygen levels could account for the FLASH effect by changing oxygen-dependent signaling in cells. While the methods of delivering FLASH are still evolving, current approaches for FLASH can differ from conventional irradiation in several ways that can impact the pattern of oxygen consumption: the rate of delivery of the radiation (40 Gy/s vs. 0.1 Gy/s), the time over which each fraction is delivered (e.g., <0.5 s. vs. 300 s), the delivery in pulses, the number of fractions, the size of the fractions, and the total duration of treatment. Taking these differences into account and recognizing that cell signaling is an intrinsic component of the need for cells to maintain steady-state conditions and, therefore, is activated by small changes in the environment, we delineate the potential time dependent changes in oxygen consumption and overview the cell signaling pathways whose differential activation by FLASH could account for the observed biological effects of FLASH. We speculate that the most likely pathways are those involved in repair of damaged DNA.


Subject(s)
Neoplasms , Oxygen , Animals , Oxygen/metabolism , Neoplasms/radiotherapy , DNA Damage , Radiotherapy Dosage
6.
Radiat Prot Dosimetry ; 199(14): 1450-1459, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721059

ABSTRACT

Extremely high dose rate radiation delivery (FLASH) for cancer treatment has been shown to produce less damage to normal tissues while having the same radiotoxic effect on tumor tissue (referred to as the FLASH effect). Research on the FLASH effect has two very pertinent implications for the field of biodosimetry: (1) FLASH is a good model to simulate delivery of prompt radiation from the initial moments after detonating a nuclear weapon and (2) the FLASH effect elucidates how dose rate impacts the biological mechanisms that underlie most types of biological biodosimetry. The impact of dose rate will likely differ for different types of biodosimetry, depending on the specific underlying mechanisms. The greatest impact of FLASH effects is likely to occur for assays based on biological responses to radiation damage, but the consequences of differential effects of dose rates on the accuracy of dose estimates has not been taken into account.


Subject(s)
Biological Assay , Nuclear Weapons
7.
Radiat Prot Dosimetry ; 199(14): 1441-1449, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721062

ABSTRACT

This paper briefly examines electron paramagnetic resonance (EPR) techniques to measure dose from exposure to external radiation, assessing their current status, potential future uses and the challenges impacting their progress. We conclude the uses and potential value of different EPR techniques depend on the number of victims and whether they characterize short- or long-term risks from exposure. For large populations, EPR biodosimetry based on in vivo measurements or using co-located inanimate objects offer the greatest promise for assessing acute, life-threatening risk and the magnitude and extent of such risk. To assess long-term risk, ex vivo EPR methods using concentrated enamel from exfoliated teeth are most impactful. For small groups, ex vivo EPR biodosimetry based on available samples of teeth, nails and/or bones are most useful. The most important challenges are common to all approaches: improve the technique's technical capabilities and advance recognition by planning groups of the relative strengths EPR techniques offer for each population size. The most useful applications are likely to be for triage and medical guidance in large events and for radiation epidemiology to evaluate long-term risks.


Subject(s)
Triage , Electron Spin Resonance Spectroscopy
8.
Radiat Prot Dosimetry ; 199(14): 1539-1550, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721065

ABSTRACT

Following large-scale radiation events, an overwhelming number of people will potentially need mitigators or treatment for radiation-induced injuries. This necessitates having methods to triage people based on their dose and its likely distribution, so life-saving treatment is directed only to people who can benefit from such care. Using estimates of victims following an improvised nuclear device striking a major city, we illustrate a two-tier approach to triage. At the second tier, after first removing most who would not benefit from care, biodosimetry should provide accurate dose estimates and determine whether the dose was heterogeneous. We illustrate the value of using in vivo electron paramagnetic resonance nail biodosimetry to rapidly assess dose and determine its heterogeneity using independent measurements of nails from the hands and feet. Having previously established its feasibility, we review the benefits and challenges of potential improvements of this method that would make it particularly suitable for tier 2 triage. Improvements, guided by a user-centered approach to design and development, include expanding its capability to make simultaneous, independent measurements and improving its precision and universality.


Subject(s)
Nails , Radiation Injuries , Humans , Triage , Electron Spin Resonance Spectroscopy , Hand
9.
Radiat Res ; 200(3): 223-231, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37590482

ABSTRACT

Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.


Subject(s)
Neoplasms , Radiation Injuries , Mice , Animals , Mice, Inbred C57BL , Skin/radiation effects , Neoplasms/pathology , Disease Models, Animal , Radiation Injuries/pathology , Radiotherapy Dosage
10.
Phys Med Biol ; 68(16)2023 08 07.
Article in English | MEDLINE | ID: mdl-37463588

ABSTRACT

Objective. The objective of this study was to investigate the impact of mean and instantaneous dose rates on the production of reactive oxygen species (ROS) during ultra-high dose rate (UHDR) radiotherapy. The study aimed to determine whether either dose rate type plays a role in driving the FLASH effect, a phenomenon where UHDR radiotherapy reduces damage to normal tissues while maintaining tumor control.Approach. Assays of hydrogen peroxide (H2O2) production and oxygen consumption (ΔpO2) were conducted using UHDR electron irradiation. Aqueous solutions of 4% albumin were utilized as the experimental medium. The study compared the effects of varying mean dose rates and instantaneous dose rates on ROS yields. Instantaneous dose rate was varied by changing the source-to-surface distance (SSD), resulting in instantaneous dose rates ranging from 102to 106Gy s-1. Mean dose rate was manipulated by altering the pulse frequency of the linear accelerator (linac) and by changing the SSD, ranging from 0.14 to 1500 Gy s-1.Main results. The study found that both ΔH2O2and ΔpO2decreased as the mean dose rate increased. Multivariate analysis indicated that instantaneous dose rates also contributed to this effect. The variation in ΔpO2was dependent on the initial oxygen concentration in the solution. Based on the analysis of dose rate variation, the study estimated that 7.51 moles of H2O2were produced for every mole of O2consumed.Significance. The results highlight the significance of mean dose rate as a predictor of ROS production during UHDR radiotherapy. As the mean dose rate increased, there was a decrease in oxygen consumption and in H2O2production. These findings have implications for understanding the FLASH effect and its potential optimization. The study sheds light on the role of dose rate parameters and their impact on radiochemical outcomes, contributing to the advancement of UHDR radiotherapy techniques.


Subject(s)
Electrons , Hydrogen Peroxide , Reactive Oxygen Species , Oxygen , Heart Rate , Radiotherapy Dosage
11.
Adv Exp Med Biol ; 1395: 315-321, 2022.
Article in English | MEDLINE | ID: mdl-36527655

ABSTRACT

The delivery of radiation at an ultra-high dose rate (FLASH) is an important new approach to radiotherapy (RT) that appears to be able to improve the therapeutic ratio by diminishing damage to normal tissues. While the mechanisms by which FLASH improves outcomes have not been established, a role involving molecular oxygen (O2) is frequently mentioned. In order to effectively determine if the protective effect of FLASH RT occurs via a differential direct depletion of O2 (compared to conventional radiation), it is essential to consider the known role of O2 in modifying the response of cells and tissues to ionising radiation (known as 'the oxygen effect'). Considerations include: (1) The pertinent reaction involves an unstable intermediate of radiation-damaged DNA, which either undergoes chemical repair to restore the DNA or reacts with O2, resulting in an unrepairable lesion in the DNA, (2) These reactions occur in the nuclear DNA, which can be used to estimate the distance needed for O2 to diffuse through the cell to reach the intermediates, (3) The longest lifetime that the reactive site of the DNA is available to react with O2 is 1-10 µsec, (4) Using these lifetime estimates and known diffusion rates in different cell media, the maximal distance that O2 could travel in the cytosol to reach the site of the DNA (i.e., the nucleus) in time to react are 60-185 nm. This calculation defines the volume of oxygen that is pertinent for the direct oxygen effect, (5) Therefore, direct measurements of oxygen to determine if FLASH RT operates through differential radiochemical depletion of oxygen will require the ability to measure oxygen selectively in a sphere of <200 nm, with a time resolution of the duration of the delivery of FLASH, (6) It also is possible that alterations of oxygen levels by FLASH could occur more indirectly by affecting oxygen-dependent cell signalling and/or cellular repair.


Subject(s)
DNA Damage , Oxygen , Radiotherapy Dosage
12.
Tissue Eng Part C Methods ; 28(6): 264-271, 2022 06.
Article in English | MEDLINE | ID: mdl-35509263

ABSTRACT

The purpose of this study was to assess the natural partial oxygen pressure (pO2) of subcutaneous (SC) and intraperitoneal (IP) sites in mice to determine their relative suitability as sites for placement of implants. The pO2 measurements were performed using oxygen imaging of solid probes using lithium phthalocyanine (LiPc) as the oxygen sensitive material. LiPc is a water-insoluble crystalline probe whose spin-lattice and spin-spin relaxation rates (R1 and R2) are sensitive to the local oxygen concentration. To facilitate direct in vivo oxygen imaging, we prepared a solid probe containing encapsulated LiPc crystals in polydimethylsiloxane (PDMS), an oxygen-permeable and bioinert polymer. Although LiPc-PDMS or similar probes have been used in repeated spectroscopic or average oxygen measurements using continuous wave electron paramagnetic resonance (EPR) since the late 1990s and now have advanced to clinical applications, they have not been used for pulse EPR oxygen imaging. One LiPc-PDMS probe of 2 mm diameter and 10 mm length was implanted in SC or IP sites (left or right side) in each animal. The pO2 imaging of implanted LiPc-PDMS probes was performed weekly for 6 weeks using O2M preclinical 25 mT oxygen imager, JIVA-25™, using the pulse inversion recovery electron spin echo method. At week 6, the probes were recovered, and histological examinations were performed. We report in this study, first-ever solid probe oxygen imaging of implanted devices and pO2 assessment of SC and IP sites.


Subject(s)
Oxygen , Polymers , Animals , Electron Spin Resonance Spectroscopy/methods , Mice , Partial Pressure , Spin Labels
14.
Appl Magn Reson ; 52(10): 1321-1342, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744319

ABSTRACT

OBJECTIVES: (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN: In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS: Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS: Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS: IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.

15.
Front Oncol ; 11: 743256, 2021.
Article in English | MEDLINE | ID: mdl-34660306

ABSTRACT

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

16.
Adv Exp Med Biol ; 1269: 301-308, 2021.
Article in English | MEDLINE | ID: mdl-33966234

ABSTRACT

Clinical measurements of O2 in tissues will inevitably provide data that are at best aggregated and will not reflect the inherent heterogeneity of O2 in tissues over space and time. Additionally, the nature of all existing techniques to measure O2 results in complex sampling of the volume that is sensed by the technique. By recognizing these potential limitations of the measures, one can focus on the very important and useful information that can be obtained from these techniques, especially data about factors that can change levels of O2 and then exploit these changes diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2.


Subject(s)
Oxygen Consumption , Oxygen , Blood Gas Analysis
17.
Adv Exp Med Biol ; 1269: 379-386, 2021.
Article in English | MEDLINE | ID: mdl-33966246

ABSTRACT

The effectiveness of blood transfusions can be impacted by storage and extensive processing techniques that involve treatment of red blood cells (RBCs) with pathogen reduction technologies (e.g., UV-light and chemical treatment), ex vivo stem cell derivation/maturation methods, and bioengineering of RBCs using nanotechnology. Therefore, there is a need to have methods that assess the evaluation of the effectiveness of transfusions to achieve their intended purpose: to increase oxygenation of critical tissues. Consequently, there has been intense interest in the development of techniques targeted at optimizing the assessment of RBC quality in preclinical and clinical settings. We provide a critical assessment of the ability of currently used methods to provide unambiguous information on oxygen levels in tissues and conclude that they cannot do this. This is because they are based on surrogates for the true goal of transfusion, which is to increase oxygenation of critical organs. This does not mean that they are valueless, but it does indicate that other methods are needed to provide direct measurements of oxygen in tissues. We report here on the initial results of a method that can provide direct assessment of the impact of the transfusion on tissue oxygen: EPR oximetry. It has the potential to provide such information in both preclinical and clinical settings for the assessment of blood quality posttransfusion.


Subject(s)
Erythrocyte Transfusion , Oxygen , Blood Transfusion , Erythrocytes , Oximetry
18.
Int J Radiat Oncol Biol Phys ; 111(1): 240-248, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33845146

ABSTRACT

PURPOSE: Delivery of radiation at ultrahigh dose rates (UHDRs), known as FLASH, has recently been shown to preferentially spare normal tissues from radiation damage compared with tumor tissues. However, the underlying mechanism of this phenomenon remains unknown, with one of the most widely considered hypotheses being that the effect is related to substantial oxygen depletion upon FLASH, thereby altering the radiochemical damage during irradiation, leading to different radiation responses of normal and tumor cells. Testing of this hypothesis would be advanced by direct measurement of tissue oxygen in vivo during and after FLASH irradiation. METHODS AND MATERIALS: Oxygen measurements were performed in vitro and in vivo using the phosphorescence quenching method and a water-soluble molecular probe Oxyphor 2P. The changes in oxygen per unit dose (G-values) were quantified in response to irradiation by 10 MeV electron beam at either UHDR reaching 300 Gy/s or conventional radiation therapy dose rates of 0.1 Gy/s. RESULTS: In vitro experiments with 5% bovine serum albumin solutions at 23°C resulted in G-values for oxygen consumption of 0.19 to 0.21 mm Hg/Gy (0.34-0.37 µM/Gy) for conventional irradiation and 0.16 to 0.17 mm Hg/Gy (0.28-0.30 µM/Gy) for UHDR irradiation. In vivo, the total decrease in oxygen after a single fraction of 20 Gy FLASH irradiation was 2.3 ± 0.3 mm Hg in normal tissue and 1.0 ± 0.2 mm Hg in tumor tissue (P < .00001), whereas no decrease in oxygen was observed from a single fraction of 20 Gy applied in conventional mode. CONCLUSIONS: Our observations suggest that oxygen depletion to radiologically relevant levels of hypoxia is unlikely to occur in bulk tissue under FLASH irradiation. For the same dose, FLASH irradiation induces less oxygen consumption than conventional irradiation in vitro, which may be related to the FLASH sparing effect. However, the difference in oxygen depletion between FLASH and conventional irradiation could not be quantified in vivo because measurements of oxygen depletion under conventional irradiation are hampered by resupply of oxygen from the blood.


Subject(s)
Neoplasms, Experimental/radiotherapy , Oxygen/analysis , Animals , Mice , Neoplasms, Experimental/metabolism , Oxygen Consumption , Radiotherapy Dosage
19.
Sci Rep ; 11(1): 4422, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627688

ABSTRACT

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.

20.
Appl Magn Reson ; 52(10): 1237-1260, 2021 Oct.
Article in English | MEDLINE | ID: mdl-36267674

ABSTRACT

This review is motivated by the exciting new area of radiation therapy using a phenomenon termed FLASH in which oxygen is thought to have a central role. Well-established principles of radiation biology and physics suggest that if oxygen has a strong role, it should be the level at the DNA. The key aspect discussed is the rate of oxygen diffusion. If oxygen freely diffuses into cells and rapidly equilibrates, then measurements in the extracellular compartment would enable FLASH to be investigated using existing methodologies that can readily measure oxygen in the extracellular compartment. EPR spin-label oximetry allows evaluation of the oxygen permeability coefficient across lipid bilayer membranes. It is established that simple fluid phase lipid bilayers are not barriers to oxygen transport. However, further investigations indicate that many physical and chemical (compositional) factor can significantly decrease this permeation. In biological cell plasma membranes, the lipid bilayer forms the matrix in which integral membrane proteins are immersed, changing organization and properties of the lipid matrix. To evaluate oxygen permeability coefficients across these complex membranes, oxygen permeation across all membrane domains and components must be considered. In this review, we consider many of the factors that affect (decrease) oxygen permeation across cell plasma membranes. Finally, we address the question, can the plasma membrane of the cell form a barrier to the free diffusion of oxygen into the cell interior? If there is a barrier then this must be considered in the investigations of the role of oxygen in FLASH.

SELECTION OF CITATIONS
SEARCH DETAIL
...