Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 5(6)2020 12 23.
Article in English | MEDLINE | ID: mdl-33361127

ABSTRACT

Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of Pseudomonas species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic polymer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associated with PET degradation. Strains and consortia of bacteria were grown in a liquid carbon-free basal medium (LCFBM) with PET as the sole carbon source. We monitored several key physical and chemical properties, including bacterial growth and modification of the plastic surface, using scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy. We detected by-products of hydrolysis of PET using 1H-nuclear magnetic resonance (1H NMR) analysis, consistent with the ATR-FTIR data. The full consortium of five strains containing Pseudomonas and Bacillus species grew synergistically in the presence of PET and the cleavage product bis(2-hydroxyethyl) terephthalic acid (BHET) as sole sources of carbon. Secreted enzymes extracted from the full consortium were capable of fully converting BHET to the metabolically usable monomers terephthalic acid (TPA) and ethylene glycol. Draft genomes provided evidence for mixed enzymatic capabilities between the strains for metabolic degradation of TPA and ethylene glycol, the building blocks of PET polymers, indicating cooperation and ability to cross-feed in a limited nutrient environment with PET as the sole carbon source. The use of bacterial consortia for the biodegradation of PET may provide a partial solution to widespread planetary plastic accumulation.IMPORTANCE While several research groups are utilizing purified enzymes to break down postconsumer PET to the monomers TPA and ethylene glycol to produce new PET products, here, we present a group of five soil bacteria in culture that are able to partially degrade this polymer. To date, mixed Pseudomonas spp. and Bacillus spp. biodegradation of PET has not been described, and this work highlights the possibility of using bacterial consortia to biodegrade or potentially to biorecycle PET plastic waste.


Subject(s)
Bacillus/metabolism , Plastics/metabolism , Polyethylene Terephthalates/metabolism , Pseudomonas/metabolism , Biodegradation, Environmental , Phthalic Acids
2.
ACS Omega ; 1(1): 138-147, 2016 Jul 31.
Article in English | MEDLINE | ID: mdl-31457121

ABSTRACT

Nanoclays are small enough to appear optically transparent, yet they have large surface-to-volume and high aspect ratios that can significantly inhibit water diffusion when incorporated into protective coatings. Clear coatings, which minimally affect the aesthetics of metalworks, are commonly applied to outdoor metalworks, such as sculptures, to prevent and slow corrosion. In recent years, waterborne clear coatings, rather than solvent-based clear coatings, are increasingly used in many applications to reduce the quantity of volatile organic components in the formulation, yet the performance of dry films produced from waterborne colloidal suspensions is generally poorer. In this work, we aim to improve the barrier properties of a highly weatherable waterborne acrylic/polyvinylidene fluoride emulsion by adding a synthetic nanoclay, Laponite, into the formulation. To improve clay-polymer compatibility, the clay was covalently modified using an acetoxy or perfluoroalkyl silane monomer that is reactive with the hydroxyl groups at the edges of the Laponite platelets. Cation exchange on the clay faces using phosphorylcholine was conducted to increase the stability in water and characterized by zeta potential. Resulting changes in barrier properties of the polymer nanocomposite films were characterized by gravimetry, colorimetry, and electrochemical impedance spectroscopy. Surface ablation after accelerated artificial weathering was monitored by attenuated total internal reflectance Fourier transform infrared microspectroscopy and Raman microspectroscopy, thin film X-ray diffraction (TF-XRD) and gloss and thickness measurements. The composite films showed many improved properties: reduced water sensitivity and ultraviolet-induced polymer degradation, which increased the barrier properties and reduced the diffusion constants over both short- and long-term weathering studies compared with films without nanoclays. The diffusion constant measured for the highest performing composite film showed that the performance gap between relevant water- and solvent-borne coatings used to protect outdoor metals was narrowed by half.

SELECTION OF CITATIONS
SEARCH DETAIL
...