Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 24(6): 919-926, 2019 09.
Article in English | MEDLINE | ID: mdl-31342141

ABSTRACT

In order to shed light on metal-dependent mechanisms for O-O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)- and Mn(III)-peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature's photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)-peroxo compound differ noticeably from the analogous Mn(III)-peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)-peroxo is more localized on the peroxo in an antibonding π*(O-O) orbital, whereas the HOMO of the structurally analogous Mn(III)-peroxo is delocalized over both the metal d-orbitals and peroxo π*(O-O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O-O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O-O bond of the former relative to the latter.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Crystallography , Manganese/chemistry , Models, Molecular , Oxygen/chemistry
2.
J Am Chem Soc ; 133(11): 3954-63, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21351789

ABSTRACT

Nitrile hydratases (NHases) are thiolate-ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)-NCR, M(III)-OH, M(III)-iminol, and M(III)-amide intermediates. There have been no reported crystallographically characterized examples of these key intermediates. Spectroscopic and kinetic data support the involvement of a M(III)-NCR intermediate. A H-bonding network facilitates this enzymatic reaction. Herein we describe two biomimetic Co(III)-NHase analogues that hydrate MeCN, and four crystallographically characterized NHase intermediate analogues, [Co(III)(S(Me2)N(4)(tren))(MeCN)](2+) (1), [Co(III)(S(Me2)N(4)(tren))(OH)](+) (3), [Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3))](+) (2), and [Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3))](2+) (5). Iminol-bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k(1)(298 K) = 2.98(5) M(-1) s(-1), ΔH(‡) = 12.65(3) kcal/mol, ΔS(‡) = -14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy E(a) = 13.2 kcal/mol is compared with that (E(a) = 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH- is ruled out by the fact that nitrile exchange from 1 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1)) is 2 orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C═O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere.


Subject(s)
Cobalt/chemistry , Nitriles/chemistry , Water/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Thermodynamics
3.
Inorg Chem ; 50(5): 1592-602, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21284379

ABSTRACT

Kinetic studies aimed at determining the most probable mechanism for the proton-dependent [Fe(II)(S(Me2)N(4)(tren))](+) (1) promoted reduction of superoxide via a thiolate-ligated hydroperoxo intermediate [Fe(III)(S(Me2)N(4)(tren))(OOH)](+) (2) are described. Rate laws are derived for three proposed mechanisms, and it is shown that they should conceivably be distinguishable by kinetics. For weak proton donors with pK(a(HA)) > pK(a(HO(2))) rates are shown to correlate with proton donor pK(a), and display first-order dependence on iron, and half-order dependence on superoxide and proton donor HA. Proton donors acidic enough to convert O(2)(-) to HO(2) (in tetrahydrofuran, THF), that is, those with pK(a(HA)) < pK(a(HO(2))), are shown to display first-order dependence on both superoxide and iron, and rates which are independent of proton donor concentration. Relative pK(a) values were determined in THF by measuring equilibrium ion pair acidity constants using established methods. Rates of hydroperoxo 2 formation displays no apparent deuterium isotope effect, and bases, such as methoxide, are shown to inhibit the formation of 2. Rate constants for p-substituted phenols are shown to correlate linearly with the Hammett substituent constants σ(-). Activation parameters ((ΔH(++) = 2.8 kcal/mol, ΔS(++) = -31 eu) are shown to be consistent with a low-barrier associative mechanism that does not involve extensive bond cleavage. Together, these data are shown to be most consistent with a mechanism involving the addition of HO(2) to 1 with concomitant oxidation of the metal ion, and reduction of superoxide (an "oxidative addition" of sorts), in the rate-determining step. Activation parameters for MeOH- (ΔH(++) = 13.2 kcal/mol and ΔS(++) = -24.3 eu), and acetic acid- (ΔH(++) = 8.3 kcal/mol and ΔS(++) = -34 eu) promoted release of H(2)O(2) to afford solvent-bound [Fe(III)(S(Me2)N(4)(tren))(OMe)](+) (3) and [Fe(III)(S(Me2)N(4)(tren))(O(H)Me)](+) (4), respectively, are shown to be more consistent with a reaction involving rate-limiting protonation of an Fe(III)-OOH, than with one involving rate-limiting O-O bond cleavage. The observed deuterium isotope effect (k(H)/k(D) = 3.1) is also consistent with this mechanism.


Subject(s)
Ferric Compounds/chemistry , Sulfhydryl Compounds/chemistry , Superoxides/chemistry , Kinetics , Thermodynamics
4.
J Am Chem Soc ; 131(43): 15945-51, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19824646

ABSTRACT

The mechanism of the Pd-catalyzed diamination and carboamination of alkenes promoted by N-fluorobenzenesulfonimide (NFBS) was investigated. Stereochemical labeling experiments established that the diamination reaction proceeds via overall syn addition of the two nitrogen groups, whereas carboamination is the result of an anti addition of arene and nitrogen to the alkene. The intermediate Pd-alkyl complex arising from aminopalladation was observed, and an X-ray crystal structure of its 2,2'-bipyridine (bipy) complex was obtained, revealing strong chelation of the amide protecting group to palladium. Aminopalladation was shown to be an anti-selective process in both the presence and the absence of added ligands, proceeding via external attack of the nitrogen on a Pd-coordinated alkene. The intermediate Pd-alkyl complex was converted to diamination product upon exposure to NFBS with inversion of configuration via oxidative addition followed by dissociation of the benzenesulfonimide anion and S(N)2 displacement of the Pd-C bond. Conversely, arylation of the Pd-alkyl complex proceeds via retention of stereochemistry, consistent with C-H activation of the arene at the Pd(IV) center. A small intermolecular isotope effect (k(H)/k(D) = 1.1) and a large intramolecular isotope effect (k(H)/k(D) = 4) were measured for this process, indicating that C-H activation occurs via a poorly selective product-determining coordination of the arene followed by a highly selective C-H activation. Competition between arenes reveals an unusual reactivity order of toluene > benzene > bromobenzene > anisole.

5.
Inorg Chem ; 47(23): 11228-36, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18989922

ABSTRACT

The syntheses and structures of three new coordinatively unsaturated, monomeric, square-pyramidal thiolate-ligated Fe(III) complexes are described, [Fe(III)((tame-N(3))S(2)(Me2))](+) (1), [Fe(III)(Et-N(2)S(2)(Me2))(py)](1-) (3), and [Fe(III)((tame-N(2)S)S(2)(Me2))](2-) (15). The anionic bis-carboxamide, tris-thiolate N(2)S(3) coordination sphere of 15 is potentially similar to that of the yet-to-be characterized unmodified form of NHase. Comparison of the magnetic and reactivity properties of these reveals how anionic charge build up (from cationic 1 to anionic 3 and dianionic 15) and spin-state influence apical ligand affinity. For all of the ligand-field combinations examined, an intermediate S = 3/2 spin state was shown to be favored by a strong N(2)S(2) basal plane ligand field, and this was found to reduce the affinity for apical ligands, even when they are built in. This is in contrast to the post-translationally modified NHase active site, which is low spin and displays a higher affinity for apical ligands. Cationic 1 and its reduced Fe(II) precursor are shown to bind NO and CO, respectively, to afford [Fe(III)((tame-N(3))S(2)(Me))(NO)](+) (18, nu(NuO) = 1865 cm(-1)), an analogue of NO-inactivated NHase, and [Fe(II)((tame-N(3))S(2)(Me))(CO)] (16; nu(CO) stretch (1895 cm(-1)). Anions (N(3)(-), CN(-)) are shown to be unreactive toward 1, 3, and 15 and neutral ligands unreactive toward 3 and 15, even when present in 100-fold excess and at low temperatures. The curtailed reactivity of 15, an analogue of the unmodified form of NHase, and its apical-oxygenated S = 3/2 derivative [Fe(III)((tame-N(2)SO(2))S(2)(Me2))](2-) (20) suggests that regioselective post-translational oxygenation of the basal plane NHase cysteinate sulfurs plays an important role in promoting substrate binding. This is supported by previously reported theoretical (DFT) calculations.


Subject(s)
Hydro-Lyases/chemistry , Iron/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Electrons , Hydro-Lyases/metabolism , Magnetics , Organometallic Compounds/metabolism , Oxidation-Reduction
6.
Inorganica Chim Acta ; 361(4): 1070-1078, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-21731109

ABSTRACT

Mechanistic pathways of metalloenzymes are controlled by the metal ion's electronic and magnetic properties, which are tuned by the coordinated ligands. The functional advantage gained by incorporating cysteinates into the active site of non-heme iron enzymes such as superoxide reductase (SOR) is not entirely understood. Herein we compare the structural and redox properties of a series of structurally-related thiolate, alkoxide, and amine-ligated Fe(II) complexes in order to determine how the thiolate influences properties critical to function. Thiolates are shown to reduce metal ion Lewis acidity relative to alkoxides and amines, and have a strong trans influence thereby helping to maintain an open coordination site. Comparison of the redox potentials of the structurally analogous compounds described herein indicates that alkoxide ligands favor the higher-valent Fe(3+) oxidation state, amine ligands favor the reduced Fe(2+) oxidation state, and thiolates fall somewhere in between. These properties provide a functional advantange for substrate reducing enzymes in that they provide a site at the metal ion for substrate to bind, and a moderate potential that facilitates both substrate reduction, and regeneration of the catalytically active reduced state. Redox potentials for structurally-related Co(II) complexes are shown to be cathodically-shifted relative to their Fe(II) analogues, making them ineffective reducing agents for substrates such as superoxide.

7.
Inorg Chem ; 46(26): 11190-201, 2007 Dec 24.
Article in English | MEDLINE | ID: mdl-18052056

ABSTRACT

Ruthenium bis(beta-diketonato) complexes have been prepared at both the RuII and RuIII oxidation levels and with protonated and deprotonated pyridine-imidazole ligands. RuII(acac)2(py-imH) (1), [RuIII(acac)2(py-imH)]OTf (2), RuIII(acac)2(py-im) (3), RuII(hfac)2(py-imH) (4), and [DBU-H][RuII(hfac)2(py-im)] (5) have been fully characterized, including X-ray crystal structures (acac = 2,4-pentanedionato, hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). For the acac-imidazole complexes 1 and 2, cyclic voltammetry in MeCN shows the RuIII/II reduction potential (E1/2) to be -0.64 V versus Cp2Fe+/0. E1/2 for the deprotonated imidazolate complex 3 (-1.00 V) is 0.36 V more negative. The RuII bis-hfac analogues 4 and 5 show the same DeltaE1/2 = 0.36 V but are 0.93 V harder to oxidize than the acac derivatives (0.29 and -0.07 V). The difference in acidity between the acac and hfac derivatives is much smaller, with pKa values of 22.1 and 19.3 in MeCN for 1 and 4, respectively. From the E1/2 and pKa values, the bond dissociation free energies (BDFEs) of the N-H bonds in 1 and 4 are calculated to be 62.0 and 79.6 kcal mol(-1) in MeCN - a remarkable difference of 17.6 kcal mol(-1) for such structurally similar compounds. Consistent with these values, there is a facile net hydrogen atom transfer from 1 to TEMPO* (2,2,6,6-tetramethylpiperidine-1-oxyl radical) to give 3 and TEMPO-H. The DeltaG degrees for this reaction is -4.5 kcal mol(-1). 4 is not oxidized by TEMPO* (DeltaG degrees = +13.1 kcal mol(-1)), but in the reverse direction TEMPO-H readily reduces in situ generated RuIII(hfac)2(py-im) (6). A RuII-imidazoline analogue of 1, RuII(acac)2(py-imnH) (7), reacts with 3 equiv of TEMPO* to give the imidazolate 3 and TEMPO-H, with dehydrogenation of the imidazoline ring.


Subject(s)
Hydrogen/chemistry , Imidazoles/chemistry , Organometallic Compounds/chemical synthesis , Ruthenium Compounds/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Ruthenium Compounds/chemistry , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...