Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-463185

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a significant challenge worldwide. Rapid genome sequencing of SARS-CoV-2 is going on across the globe to detect mutations and genomic modifications in SARS-CoV-2. In this study, we have sequenced twenty-three SARS-CoV-2 positive samples collected during the first pandemic from the state of Uttar Pradesh, India. We observed a range of already reported mutations (2-22), including; D614G, L452R, Q613H, Q677H, T1027I in the S gene; S194L in the N gene; Q57H, L106F, T175I in the ORF3. Few unreported mutations such as P309S in the ORF1ab gene; T379I in the N gene; and L52F, V77I in the ORF3a gene were also detected. Phylogenetic genome analysis showed similarity with other SARS-CoV-2 viruses reported from Uttar Pradesh. The observed mutations may be associated with SARS-CoV-2 virus pathogenicity or disease severity.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-172833

ABSTRACT

The ongoing spread of pandemic coronavirus disease (COVID-19) is caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). In the lack of specific drugs or vaccines for SARS-CoV-2, demands rapid diagnosis and management are crucial for controlling the outbreak in the community. Here we report the development of the first rapid-colorimetric assay capable of detecting SARS-CoV-2 in the human nasopharyngeal RNA sample in less than 30 minutes. We utilized a nanomaterial-based optical sensing platform to detect RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2, where the formation of oligo probe-target hybrid led to salt-induced aggregation and changes in gold-colloid color from pink to blue in visible range. Accordingly, we found a change in colloid color from pink to blue in assay containing nasopharyngeal RNA sample from the subject with clinically diagnosed COVID-19. The colloid retained pink color when the test includes samples from COVID-19 negative subjects or human papillomavirus (HPV) infected women. The results were validated using nasopharangeal RNA samples from suspected COVID-19 subjects (n=136). Using RT-PCR as gold standard, the assay was found to have 85.29% sensitivity and 94.12% specificity. The optimized method has detection limit as little as 0.5 ng of SARS-CoV-2 RNA. Overall, the developed assay rapidly detects SARS-CoV-2 RNA in clinical samples in a cost-effective manner and would be useful in pandemic management by facilitating mass screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...