Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
CPT Pharmacometrics Syst Pharmacol ; 12(2): 139-143, 2023 02.
Article in English | MEDLINE | ID: mdl-36418887

ABSTRACT

Immunogenicity against therapeutic proteins frequently causes attrition owing to its potential impact on pharmacokinetics, pharmacodynamics, efficacy, and safety. Predicting immunogenicity is complex because of its multifactorial drivers, including compound properties, subject characteristics, and treatment parameters. To integrate these, the Immunogenicity Simulator was developed using published, predominantly late-stage trial data from 15 therapeutic proteins. This single-blinded evaluation with subject-level data from 10 further monoclonals assesses the Immunogenicity Simulator's credibility for application during the drug development process.


Subject(s)
Drug Development , Network Pharmacology , Humans , Proteins/immunology , Proteins/therapeutic use
2.
Phys Med Biol ; 66(4): 045026, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33339019

ABSTRACT

Understanding and designing clinical radiation therapy is one of the most important areas of state-of-the-art oncological treatment regimens. Decades of research have gone into developing sophisticated treatment devices and optimization protocols for schedules and dosages. In this paper, we presented a comprehensive computational platform that facilitates building of the sophisticated multi-cell-based model of how radiation affects the biology of living tissue. We designed and implemented a coupled simulation method, including a radiation transport model, and a cell biology model, to simulate the tumor response after irradiation. The radiation transport simulation was implemented through Geant4 which is an open-source Monte Carlo simulation platform that provides many flexibilities for users, as well as low energy DNA damage simulation physics, Geant4-DNA. The cell biology simulation was implemented using CompuCell3D (CC3D) which is a cell biology simulation platform. In order to couple Geant4 solver with CC3D, we developed a 'bridging' module, RADCELL, that extracts tumor cellular geometry of the CC3D simulation (including specification of the individual cells) and ported it to the Geant4 for radiation transport simulation. The cell dose and cell DNA damage distribution in multicellular system were obtained using Geant4. The tumor response was simulated using cell-based tissue models based on CC3D, and the cell dose and cell DNA damage information were fed back through RADCELL to CC3D for updating the cell properties. By merging two powerful and widely used modeling platforms, CC3D and Geant4, we delivered a novel tool that can give us the ability to simulate the dynamics of biological tissue in the presence of ionizing radiation, which provides a framework for quantifying the biological consequences of radiation therapy. In this introductory methods paper, we described our modeling platform in detail and showed how it can be applied to study the application of radiotherapy to a vascularized tumor.


Subject(s)
Computer Simulation , Neoplasms, Vascular Tissue/radiotherapy , Radiobiology/methods , Radiotherapy/methods , Dose-Response Relationship, Radiation , Humans , Models, Biological , Monte Carlo Method , Neoplasms, Vascular Tissue/physiopathology , Radiation Dosage , Radiation, Ionizing , Software
3.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977592

ABSTRACT

The kinetic model of Prostaglandin H Synthase-1 (PGHS-1) was developed to investigate its complex network kinetics and non-steroidal anti-inflammatory drugs (NSAIDs) efficacy in different in vitro and in vivo conditions. To correctly describe the complex mechanism of PGHS-1 catalysis, we developed a microscopic approach to modelling of intricate network dynamics of 35 intraenzyme reactions among 24 intermediate states of the enzyme. The developed model quantitatively describes interconnection between cyclooxygenase and peroxidase enzyme activities; substrate (arachidonic acid, AA) and reducing cosubstrate competitive consumption; enzyme self-inactivation; autocatalytic role of AA; enzyme activation threshold; and synthesis of intermediate prostaglandin G2 (PGG2) and final prostaglandin H2 (PGH2) products under wide experimental conditions. In the paper, we provide a detailed description of the enzyme catalytic cycle, model calibration based on a series of in vitro kinetic data, and model validation using experimental data on the regulatory properties of PGHS-1. The validated model of PGHS-1 with a unified set of kinetic parameters is applicable for in silico screening and prediction of the inhibition effects of NSAIDs and their combination on the balance of pro-thrombotic (thromboxane) and anti-thrombotic (prostacyclin) prostaglandin biosynthesis in platelets and endothelial cells expressing PGHS-1.

4.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Article in English | MEDLINE | ID: mdl-32845085

ABSTRACT

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Subject(s)
Systems Biology/methods , Animals , Humans , Logistic Models , Models, Biological , Software
6.
Int J Radiat Biol ; 95(11): 1484-1497, 2019 11.
Article in English | MEDLINE | ID: mdl-31290712

ABSTRACT

Purpose: The aim of this study is to build a computational model to investigate the cell dose and cell DNA damage distribution of a multicellular tissue system under the irradiation.Materials and methods: In this work, we developed a computational model for quantifying cell dose and double strand break (DSB) number in a multicellular system by simulating the radiation transport in 2D and 3D cell culture. The model was based on an open-source radiation transport package, Geant4 with Geant4-DNA physics. First, the computational multicellular system was created using a developed program, CelllMaker. Second, the radiation transport simulation for cells was conducted using Geant4 package with the Geant4-DNA physics to obtain the cellular dose and cellular DSB yield.Results: Using the method described in this work, it is possible to obtain the cellular dose and DNA damage simultaneously. The developed model provides a solution for quantifying the cellular dose and cellular DNA damage which are not easily determined in a radiobiological experiment.Conclusions: With limited validation data for the model, this preliminary study provides a roadmap for building a comprehensive toolkit for simulating cellular dose and DNA damage of multicellular tissue systems.


Subject(s)
Computer Simulation , DNA Breaks, Double-Stranded , DNA/radiation effects , Cobalt Radioisotopes , Computational Biology/methods , Humans , Linear Energy Transfer , Monte Carlo Method , Programming Languages , Radiobiology , Software
7.
Integr Biol (Camb) ; 10(10): 605-634, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30206629

ABSTRACT

It is widely agreed that keratinocyte migration plays a crucial role in wound re-epithelialization. Defects in this function contribute to wound reoccurrence causing significant clinical problems. Several in vitro studies have shown that the speed of migrating keratinocytes can be regulated by epidermal growth factor (EGF) which affects keratinocyte's integrin expression. The relationship between integrin expression (through cell-matrix adhesion) stimulated by EGF and keratinocyte migration speed is not linear since increased adhesion, due to increased integrin expression, has been experimentally shown to slow down cell migration due to the biphasic dependence of cell speed on adhesion. In our previous work we showed that keratinocytes that were co-cultured with EGF-enhanced fibroblasts formed an asymmetric migration pattern, where, the cumulative distances of keratinocytes migrating toward fibroblasts were smaller than those migrating away from fibroblasts. This asymmetric pattern is thought to be provoked by high EGF concentration secreted by fibroblasts. The EGF stimulates the expression of integrin receptors on the surface of keratinocytes migrating toward fibroblasts via paracrine signaling. In this paper, we present a computational model of keratinocyte migration that is controlled by EGF secreted by fibroblasts using the Cellular Potts Model (CPM). Our computational simulation results confirm the asymmetric pattern observed in experiments. These results provide a deeper insight into our understanding of the complexity of keratinocyte migration in the presence of growth factor gradients and may explain re-epithelialization failure in impaired wound healing.


Subject(s)
Epidermal Growth Factor/metabolism , Epithelium/metabolism , Fibroblasts/metabolism , Keratinocytes/cytology , Re-Epithelialization , Cell Adhesion , Cell Line , Cell Movement , Coculture Techniques , Collagen/chemistry , Computer Simulation , Humans , Integrins/metabolism , Models, Theoretical , Paracrine Communication , Signal Transduction , Skin/metabolism , Stress, Mechanical
10.
Nucleic Acids Res ; 46(D1): D1248-D1253, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29106614

ABSTRACT

BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing.


Subject(s)
Data Curation , Models, Biological , Software , Data Collection , Data Curation/methods , Internet , User-Computer Interface
12.
PLoS One ; 11(9): e0162428, 2016.
Article in English | MEDLINE | ID: mdl-27636091

ABSTRACT

We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.


Subject(s)
Liver/drug effects , Models, Theoretical , Xenobiotics , Acetaminophen/pharmacology , Liver/metabolism , Programming Languages
13.
PLoS Comput Biol ; 12(6): e1004952, 2016 06.
Article in English | MEDLINE | ID: mdl-27322528

ABSTRACT

In convergent-extension (CE), a planar-polarized epithelial tissue elongates (extends) in-plane in one direction while shortening (converging) in the perpendicular in-plane direction, with the cells both elongating and intercalating along the converging axis. CE occurs during the development of most multicellular organisms. Current CE models assume cell or tissue asymmetry, but neglect the preferential filopodial activity along the convergent axis observed in many tissues. We propose a cell-based CE model based on asymmetric filopodial tension forces between cells and investigate how cell-level filopodial interactions drive tissue-level CE. The final tissue geometry depends on the balance between external rounding forces and cell-intercalation traction. Filopodial-tension CE is robust to relatively high levels of planar cell polarity misalignment and to the presence of non-active cells. Addition of a simple mechanical feedback between cells fully rescues and even improves CE of tissues with high levels of polarity misalignments. Our model extends easily to three dimensions, with either one converging and two extending axes, or two converging and one extending axes, producing distinct tissue morphologies, as observed in vivo.


Subject(s)
Cell Adhesion/physiology , Cell Polarity/physiology , Embryonic Development/physiology , Mechanotransduction, Cellular/physiology , Models, Biological , Pseudopodia/physiology , Animals , Computer Simulation , Elastic Modulus/physiology , Feedback, Physiological/physiology , Humans , Stress, Mechanical , Tensile Strength/physiology
14.
Mol Biol Cell ; 27(22): 3673-3685, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27193300

ABSTRACT

In autosomal dominant polycystic kidney disease (ADPKD), cysts accumulate and progressively impair renal function. Mutations in PKD1 and PKD2 genes are causally linked to ADPKD, but how these mutations drive cell behaviors that underlie ADPKD pathogenesis is unknown. Human ADPKD cysts frequently express cadherin-8 (cad8), and expression of cad8 ectopically in vitro suffices to initiate cystogenesis. To explore cell behavioral mechanisms of cad8-driven cyst initiation, we developed a virtual-tissue computer model. Our simulations predicted that either reduced cell-cell adhesion or reduced contact inhibition of proliferation triggers cyst induction. To reproduce the full range of cyst morphologies observed in vivo, changes in both cell adhesion and proliferation are required. However, only loss-of-adhesion simulations produced morphologies matching in vitro cad8-induced cysts. Conversely, the saccular cysts described by others arise predominantly by decreased contact inhibition, that is, increased proliferation. In vitro experiments confirmed that cell-cell adhesion was reduced and proliferation was increased by ectopic cad8 expression. We conclude that adhesion loss due to cadherin type switching in ADPKD suffices to drive cystogenesis. Thus, control of cadherin type switching provides a new target for therapeutic intervention.


Subject(s)
Cadherins/metabolism , Computer Simulation/statistics & numerical data , Animals , Cell Adhesion/physiology , Cell Culture Techniques , Cell Proliferation/physiology , Cysts/metabolism , Humans , Kidney/metabolism , Mutation , Polycystic Kidney, Autosomal Dominant/metabolism , Signal Transduction
15.
Bioinformatics ; 32(17): 2719-21, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27153608

ABSTRACT

MOTIVATION: Probability distributions play a central role in mathematical and statistical modelling. The encoding, annotation and exchange of such models could be greatly simplified by a resource providing a common reference for the definition of probability distributions. Although some resources exist, no suitably detailed and complex ontology exists nor any database allowing programmatic access. RESULTS: ProbOnto, is an ontology-based knowledge base of probability distributions, featuring more than 80 uni- and multivariate distributions with their defining functions, characteristics, relationships and re-parameterization formulas. It can be used for model annotation and facilitates the encoding of distribution-based models, related functions and quantities. AVAILABILITY AND IMPLEMENTATION: http://probonto.org CONTACT: mjswat@ebi.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Knowledge Bases , Probability , Databases, Factual
16.
J Theor Biol ; 401: 1-14, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27084360

ABSTRACT

Radiotherapy is a commonly used treatment for cancer and is usually given in varying doses. At low radiation doses relatively few cells die as a direct response to radiation but secondary radiation effects, such as DNA mutation or bystander phenomena, may affect many cells. Consequently it is at low radiation levels where an understanding of bystander effects is essential in designing novel therapies with superior clinical outcomes. In this paper, we use a hybrid multiscale mathematical model to study the direct effects of radiation as well as radiation-induced bystander effects on both tumour cells and normal cells. We show that bystander responses play a major role in mediating radiation damage to cells at low-doses of radiotherapy, doing more damage than that due to direct radiation. The survival curves derived from our computational simulations showed an area of hyper-radiosensitivity at low-doses that are not obtained using a traditional radiobiological model.


Subject(s)
Bystander Effect/radiation effects , Computer Simulation , Radiotherapy/adverse effects , Animals , DNA Damage , Humans , Models, Biological , Radiation Tolerance
17.
Cancer Res ; 76(6): 1320-1334, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26719526

ABSTRACT

In ovarian cancer, metastasis is typically confined to the peritoneum. Surgical removal of the primary tumor and macroscopic secondary tumors is a common practice, but more effective strategies are needed to target microscopic spheroids persisting in the peritoneal fluid after debulking surgery. To treat this residual disease, therapeutic agents can be administered by either intravenous or intraperitoneal infusion. Here, we describe the use of a cellular Potts model to compare tumor penetration of two classes of drugs (cisplatin and pertuzumab) when delivered by these two alternative routes. The model considers the primary route when the drug is administered either intravenously or intraperitoneally, as well as the subsequent exchange into the other delivery volume as a secondary route. By accounting for these dynamics, the model revealed that intraperitoneal infusion is the markedly superior route for delivery of both small-molecule and antibody therapies into microscopic, avascular tumors typical of patients with ascites. Small tumors attached to peritoneal organs, with vascularity ranging from 2% to 10%, also show enhanced drug delivery via the intraperitoneal route, even though tumor vessels can act as sinks during the dissemination of small molecules. Furthermore, we assessed the ability of the antibody to enter the tumor by in silico and in vivo methods and suggest that optimization of antibody delivery is an important criterion underlying the efficacy of these and other biologics. The use of both delivery routes may provide the best total coverage of tumors, depending on their size and vascularity.


Subject(s)
Antineoplastic Agents/pharmacology , Ovarian Neoplasms/drug therapy , Animals , Antibodies/pharmacology , Cell Line, Tumor , Drug Delivery Systems/methods , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Theoretical , Small Molecule Libraries/pharmacology
18.
Methods Mol Biol ; 1386: 441-63, 2016.
Article in English | MEDLINE | ID: mdl-26677194

ABSTRACT

Modeling is an integral component of modern biology. In this chapter we look into the role of the model, as it pertains to Systems Medicine, and the software that is required to instantiate and run it. We do this by comparing the development, implementation, and characteristics of tools that have been developed to work with two divergent methodologies: Systems Biology and Pharmacometrics. From the Systems Biology perspective we consider the concept of "Software as a Medical Device" and what this may imply for the migration of research-oriented, simulation software into the domain of human health.In our second perspective, we see how in practice hundreds of computational tools already accompany drug discovery and development at every stage of the process. Standardized exchange formats are required to streamline the model exchange between tools, which would minimize translation errors and reduce the required time. With the emergence, almost 15 years ago, of the SBML standard, a large part of the domain of interest is already covered and models can be shared and passed from software to software without recoding them. Until recently the last stage of the process, the pharmacometric analysis used in clinical studies carried out on subject populations, lacked such an exchange medium. We describe a new emerging exchange format in Pharmacometrics which covers the non-linear mixed effects models, the standard statistical model type used in this area. By interfacing these two formats the entire domain can be covered by complementary standards and subsequently the according tools.


Subject(s)
Computational Biology/methods , Medicine/methods , Models, Biological , Software , Systems Biology/methods , Computer Simulation , Drug Discovery , Humans , Programming Languages
19.
Bioinformatics ; 31(20): 3315-21, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26085503

ABSTRACT

MOTIVATION: This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. RESULTS: libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB ( WWWMATHWORKSCOM: ) and SciPy ( HTTP//WWWSCIPYORG/: ), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. AVAILABILITY AND IMPLEMENTATION: libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. CONTACTS: hsauro@u.washington.edu or somogyie@indiana.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computer Simulation , Models, Theoretical , Software , Systems Biology/methods , Cell Adhesion/physiology , Humans , Liver/metabolism , Models, Biological , Neurons/metabolism , Programming Languages
20.
PLoS One ; 10(6): e0127972, 2015.
Article in English | MEDLINE | ID: mdl-26083246

ABSTRACT

Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.


Subject(s)
Models, Biological , Neoplasms/pathology , User-Computer Interface , Algorithms , Cell Adhesion , Cellular Senescence , Glucose/metabolism , Humans , Internet , Mitosis , Mutation , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...