Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4151, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438330

ABSTRACT

Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-x show the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices.

2.
Sci Rep ; 7(1): 12822, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28993691

ABSTRACT

Several rare-earth monopnictides were shown to exhibit extreme magnetoresistance and field-induced low-temperature plateau of electrical resistivity. These features are also hallmarks of topological semimetals, thus the family is intensively explored with respect to magneto-transport properties and possible hosting Dirac fermion states. We report a comprehensive investigation of Fermi surface and electrical transport properties of LuSb, another representative of this family. At low temperatures, the magnetoresistance of LuSb was found to exceed 3000% without saturation in fields up to 9 T. Analysis of the Hall effect and the Shubnikov-de Haas oscillations revealed that the Fermi surface of this compound consists of several pockets originating from fairly compensated multi-band electronic structure, in full accordance with our first-principles calculations. Observed magnetotransport properties of LuSb can be attributed to the topology of three-dimensional Fermi surface and a compensation of electron and hole contributions.

3.
Sci Rep ; 6: 38691, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934949

ABSTRACT

Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

4.
J Phys Condens Matter ; 28(43): 435602, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27603776

ABSTRACT

A polycrystalline sample of La2NiSi3 was investigated by means of heat capacity, magnetic susceptibility, magnetization, electrical resistivity and magnetoresistivity measurements. The compound was basically characterized as a Pauli paramagnet with metallic-like electrical conductivity, notably reduced in magnitude and weakly temperature dependent, as is usually observed for atomically disordered systems. Furthermore, the experimental data revealed the presence of a small amount of paramagnetic impurities. As a result, the low-temperature electrical resistivity in La2NiSi3 was found to be governed by both quantum corrections due to electron-electron interactions ([Formula: see text] contribution) and spin-flip Kondo scattering ([Formula: see text] contribution). The presence of paramagnetic impurities led to an increase in s-electron spin splitting due to the s-d interactions, manifested by a B (1/2) dependence of the magnetoresistivity, anomalously observed in the present study for thermal energy being larger than the Zeeman splitting energy [Formula: see text].

SELECTION OF CITATIONS
SEARCH DETAIL
...