Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400070, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639028

ABSTRACT

H+ co-intercalation chemistry of the cathode is perceived to have damaging consequences on the low-rate and long-term cycling of aqueous zinc batteries, which is a critical hindrance to their promise for stationary storage applications. Herein, the thermodynamically competitive H+ storage chemistry of an attractive high-voltage cathode LiMn2O4 is revealed by employing operando and ex-situ analytical techniques together with density functional theory-based calculations. The H+ electrochemistry leads to the previously unforeseen voltage decay with cycling, impacting the available energy density, particularly at lower currents. Based on an in-depth investigation of the effect of the Li+ to Zn2+ ratio in the electrolyte on the charge storage mechanism, a purely aqueous and low-salt concentration electrolyte with a tuned Li+/Zn2+ ratio is introduced to subdue the H+-mediated charge storage kinetically, resulting in a stable voltage output and improved cycling stability at both low and high cathode loadings. Synchrotron X-ray diffraction analysis reveals that repeated H+ intercalation triggers an irreversible phase transformation leading to voltage decay, which is averted by shutting down H+ storage. These findings unveiling the origin and impact of the deleterious H+-storage, coupled with the practical strategy for its inhibition, will inspire further work toward this under-explored realm of aqueous battery chemistry.

2.
J Chem Theory Comput ; 19(13): 4202-4215, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37329316

ABSTRACT

We assess the accuracy and computational efficiency of the recently developed meta-generalized gradient approximation (metaGGA) functional, restored regularized strongly constrained and appropriately normed (r2SCAN), in transition metal oxide (TMO) systems and compare its performance against SCAN. Specifically, we benchmark the r2SCAN-calculated oxidation enthalpies, lattice parameters, on-site magnetic moments, and band gaps of binary 3d TMOs against the SCAN-calculated and experimental values. Additionally, we evaluate the optimal Hubbard U correction required for each transition metal (TM) to improve the accuracy of the r2SCAN functional, based on experimental oxidation enthalpies, and verify the transferability of the U values by comparing against experimental properties on other TM-containing oxides. Notably, including the U-correction with r2SCAN increases the lattice parameters, on-site magnetic moments, and band gaps of TMOs, apart from an improved description of the ground state electronic state in narrow band gap TMOs. The r2SCAN and r2SCAN+U calculated oxidation enthalpies follow the qualitative trends of SCAN and SCAN+U, with r2SCAN and r2SCAN+U predicting marginally larger lattice parameters, smaller magnetic moments, and lower band gaps compared to SCAN and SCAN+U, respectively. We observe the overall computational time (i.e., for all ionic+electronic steps) required for r2SCAN(+U) to be lower than SCAN(+U). Thus, the r2SCAN(+U) framework can offer a reasonably accurate description of the ground state properties of TMOs with better computational efficiency than SCAN(+U).

SELECTION OF CITATIONS
SEARCH DETAIL
...