Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 272(33): 20873-83, 1997 Aug 15.
Article in English | MEDLINE | ID: mdl-9252414

ABSTRACT

In yeast, mutations in the CDP-choline pathway for phosphatidylcholine biosynthesis permit the cell to grow even when the SEC14 gene is completely deleted (Cleves, A., McGee, T., Whitters, E., Champion, K., Aitken, J., Dowhan, W., Goebl, M., and Bankaitis, V. (1991) Cell 64, 789-800). We report that strains carrying mutations in the CDP-choline pathway, such as cki1, exhibit a choline excretion phenotype due to production of choline during normal turnover of phosphatidylcholine. Cells carrying cki1 in combination with sec14(ts), a temperature-sensitive allele in the gene encoding the phosphatidylinositol/phosphatidylcholine transporter, have a dramatically increased choline excretion phenotype when grown at the sec14(ts)-restrictive temperature. We show that the increased choline excretion in sec14(ts) cki1 cells is due to increased turnover of phosphatidylcholine via a mechanism consistent with phospholipase D-mediated turnover. We propose that the elevated rate of phosphatidylcholine turnover in sec14(ts) cki1 cells provides the metabolic condition that permits the secretory pathway to function when Sec14p is inactivated. As phosphatidylcholine turnover increases in sec14(ts) cki1 cells shifted to the restrictive temperature, the INO1 gene (encoding inositol-1-phosphate synthase) is also derepressed, leading to an inositol excretion phenotype (Opi-). Misregulation of the INO1 gene has been observed in many strains with altered phospholipid metabolism, and the relationship between phosphatidylcholine turnover and regulation of INO1 and other co-regulated genes of phospholipid biosynthesis is discussed.


Subject(s)
Carrier Proteins/physiology , Gene Expression Regulation, Enzymologic , Membrane Proteins , Myo-Inositol-1-Phosphate Synthase/genetics , Phosphatidylcholines/metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Choline/metabolism , Inositol/metabolism , Phospholipid Transfer Proteins , Phospholipids/analysis , Phospholipids/metabolism
2.
J Biol Chem ; 271(41): 25692-8, 1996 Oct 11.
Article in English | MEDLINE | ID: mdl-8810347

ABSTRACT

In yeast, as in other eukaryotes, phosphatidylcholine (PC) can be synthesized via methylation of phosphatidylethanolamine or from free choline via the CDP-choline pathway. In yeast, PC biosynthesis is required for the repression of the phospholipid biosynthetic genes, including the INO1 gene, in response to inositol. In this study, we analyzed the effect of mutations in genes encoding enzymes involved in PC biosynthesis on the transcriptional regulation of phospholipid biosynthetic genes. We report that repression of INO1 transcription in response to inositol is clearly dependent on ongoing PC biosynthesis, but it is independent of the route of synthesis. Our results also suggest that intermediates in the phosphatidylethanolamine methylation and CDP-choline pathways are not responsible for generating the regulatory signal that results in repression of INO1 and other coregulated genes of phospholipid biosynthesis. Furthermore, repression of INO1 is not tightly correlated to the proportion of PC in the total cellular phospholipids. Rather, we report that when the rate of synthesis of PC becomes growth limiting, the addition of inositol fails to repress the phospholipid biosynthetic genes, but when the rate of PC synthesis is sufficient to sustain normal growth, the addition of inositol to the growth medium has the effect of repressing INO1 and other phospholipid biosynthetic genes.


Subject(s)
Gene Expression Regulation, Fungal , Myo-Inositol-1-Phosphate Synthase/biosynthesis , Phosphatidylcholines/biosynthesis , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Choline/metabolism , Genes, Fungal , Genotype , Kinetics , Phenotype , Phosphatidylethanolamines/metabolism , Phospholipids/metabolism , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...