Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncologist ; 27(4): 266-271, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35380717

ABSTRACT

Many candidate surrogate endpoints are currently assessed using a 2-level statistical approach, which consists in checking whether (1) the potential surrogate is associated with the final endpoint in individual patients and (2) the effect of treatment on the surrogate can be used to reliably predict the effect of treatment on the final endpoint. In some situations, condition (1) is fulfilled but condition (2) is not. We use concepts of causal inference to explain this apparently paradoxical situation, illustrating this review with 2 contrasting examples in operable breast cancer: the example of pathological complete response (pCR) and that of disease-free survival (DFS). In a previous meta-analysis, pCR has been shown to be a strong and independent prognostic factor for event-free survival (EFS) and overall survival (OS) after neoadjuvant treatment of operable breast cancer. Yet, in randomized trials, the effects of experimental treatments on pCR have not translated into predictable effects on EFS or OS, making pCR an "individual-level" surrogate, but not a "trial-level" surrogate. In contrast, DFS has been shown to be an acceptable surrogate for OS at both the individual and trial levels in early, HER2-positive breast cancer. The distinction between the prognostic and predictive roles of a tentative surrogate, not always made in the literature, avoids unnecessary confusion and allows better understanding of what it takes to validate a surrogate endpoint that is truly able to replace a final endpoint.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Biomarkers , Breast Neoplasms/pathology , Disease-Free Survival , Female , Humans , Prognosis , Treatment Outcome
2.
Clin Cancer Res ; 16(2): 699-710, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20068101

ABSTRACT

PURPOSE: The aims were to assess the safety, pharmacokinetics, maximum tolerated dose, and antitumor activity of AMG 102, a fully human hepatocyte growth factor/scatter factor (HGF/SF)-neutralizing monoclonal antibody, in patients with solid tumors. EXPERIMENTAL DESIGN: Patients (N = 40) with refractory advanced solid tumors were enrolled into six sequential dose-escalation cohorts (0.5, 1, 3, 5, 10, or 20 mg/kg AMG 102 i.v. every 2 weeks) and a dose-expansion cohort (20 mg/kg AMG 102 every 2 weeks). Safety, anti-AMG 102 antibody formation, pharmacokinetics, tumor response, and exploratory biomarkers were assessed. RESULTS: AMG 102 was well tolerated up to the planned maximum dose of 20 mg/kg, and the maximum tolerated dose was not reached. Treatment-related adverse events were generally mild and included fatigue (13%), constipation (8%), nausea (8%), vomiting (5%), anorexia (5%), myalgia (5%), and hypertension (5%). Two patients experienced dose-limiting toxicities: one patient (0.5 mg/kg cohort) experienced grade 3 hypoxia and grade 3 dyspnea and one patient (1 mg/kg cohort) experienced grade 3 upper gastrointestinal hemorrhage. No anti-AMG 102 antibodies were detected, and AMG 102 had linear pharmacokinetics within the dose range investigated. Sixteen of 23 (70%) evaluable patients had a best response of stable disease with progression-free survival ranging from 7.9 to 40 weeks. Circulating levels of the biomarker HGF/SF (bound and unbound) increased in a dose-dependent manner, whereas soluble c-Met concentrations were generally similar across doses. CONCLUSIONS: AMG 102 is safe and well tolerated, has a favorable pharmacokinetic profile, and will be further investigated as a monotherapy and in combination with other agents.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Neoplasms/drug therapy , Adult , Aged , Animals , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Disease Progression , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Female , Hepatocyte Growth Factor/immunology , Humans , Male , Maximum Tolerated Dose , Mice , Middle Aged , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...