Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Diabetes ; 62(9): 3261-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23775764

ABSTRACT

Bariatric procedures vary in efficacy, but overall are more effective than behavioral and pharmaceutical treatment. Roux-en-Y gastric bypass causes increased secretion of glucagon-like peptide 1 (GLP-1) and reduces body weight (BW) more than adjustable gastric banding (AGB), which does not trigger increased GLP-1 secretion. Since GLP-1-based drugs consistently reduce BW, we hypothesized that GLP-1 receptor (GLP-1R) agonists would augment the effects of AGB. Male Long-Evans rats with diet-induced obesity received AGB implantation or sham surgery. GLP-1R agonism, cannabinoid receptor-1 (CB1-R) antagonism, or vehicle was combined with inflation to evaluate interaction between AGB and pharmacological treatments. GLP1-R agonism reduced BW in both sham and AGB rats (left uninflated) compared with vehicle-treated animals. Subsequent band inflation was ineffective in vehicle-treated rats but enhanced weight loss stimulated by GLP1-R agonism. In contrast, there was no additional BW loss when CB1-R antagonism was given with AGB. We found band inflation to trigger neural activation in areas of the nucleus of the solitary tract known to be targeted by GLP-1R agonism, offering a potential mechanism for the interaction. These data show that GLP-1R agonism, but not CB1-R antagonism, improves weight loss achieved by AGB and suggest an opportunity to optimize bariatric surgery with adjunctive pharmacotherapy.


Subject(s)
Obesity/drug therapy , Obesity/surgery , Receptors, Glucagon/agonists , Animals , Body Composition/drug effects , Eating/drug effects , Exenatide , Gastric Bypass , Gastroplasty , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor , Immunohistochemistry , Male , Obesity/etiology , Obesity/metabolism , Peptides/therapeutic use , Rats , Rats, Long-Evans , Receptors, Cannabinoid/metabolism , Venoms/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...