Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 136(3): 59, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36912946

ABSTRACT

KEY MESSAGE: Malt for craft "all-malt" brewing can have high quality, PHS resistance, and malted in normal timeframes. Canadian style adjunct malt is associated with PHS susceptibility. Expansion of malting barley production into non-traditional growing regions and erratic weather has increased the demand for preharvest sprouting (PHS) resistant, high quality malting barley cultivars. This is hindered by the relatively unknown relationships between PHS resistance and malting quality. Here we present a three-year study of malting quality and germination at different after-ripening durations post physiological maturity. Malting quality traits alpha amylase (AA) and free amino nitrogen (FAN) and germination rate at six days post PM shared a common association with a SNP in HvMKK3 on chromosome 5H in the Seed Dormancy 2 (SD2) region responsible for PHS susceptibility. Soluble protein (SP) and soluble over total protein (S/T) both shared a common association with a marker in the SD2 region. Significant genetic correlations between PHS resistance and the malting quality traits AA, FAN, SP, S/T were detected across and within HvMKK3 allele groups. High adjunct malt quality was related to PHS susceptibility. Selection for PHS resistance led to a correlated response in malting quality traits. Results strongly suggest pleiotropy of HvMKK3 on malting quality traits and that the classic "Canadian-style" malt is caused by a PHS susceptible allele of HvMKK3. PHS susceptibility appears to benefit the production of malt intended for adjunct brewing, while PHS resistance is compatible with all-malt brewing specifications. Here we present our analysis on the effect of combining complexly inherited and correlated traits with contrasting goals to inform breeding practice in malting barley, the general principles of which can be extended to other breeding programs.


Subject(s)
Hordeum , Hordeum/genetics , Plant Breeding , Canada , Phenotype , Germination/genetics
2.
Theor Appl Genet ; 135(1): 217-232, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34633474

ABSTRACT

KEY MESSAGE: HvMKK3 alleles are temperature sensitive and are major contributors to environmental stability of preharvest sprouting in barley. Preharvest sprouting (PHS) can severely damage barley (Hordeum vulgare L.) malting quality, but PHS resistance is often negatively correlated with malting quality. Seed dormancy is closely related to PHS. Increased temperature during grain fill can decrease seed dormancy in barley, but genetic components of seed dormancy temperature sensitivity are poorly understood. Six years of PHS data were used to fit quantitative trait locus (QTL) x environment mixed models incorporating marker data from seed dormancy genes HvAlaAT1, HvGA20ox1, and HvMKK3 and weather covariates in spring and winter two-row malting barley. Variation in winter barley PHS was best modeled by average temperature range during grain fill and spring barley PHS by total precipitation during grain fill. Average high temperature during grain fill also accurately modeled PHS for both datasets. A highly non-dormant HvMKK3 allele determined baseline PHS susceptibility and HvAlaAT1 interactions with multiple HvMKK3 alleles conferred environmental sensitivity. Polygenic variation for PHS within haplotype was detected. Residual genotype and QTL by environment interaction variance indicated additional environmental and genetic factors involved in PHS. These models provide insight into genotype and environmental regulation of barley seed dormancy, a method for PHS forecasting, and a tool for breeders to improve PHS resistance.


Subject(s)
Hordeum/genetics , Models, Biological , Quantitative Trait Loci , Seedlings/growth & development , Alleles , Gene-Environment Interaction , Genes, Plant , Hordeum/enzymology , Hordeum/growth & development , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Plant Dormancy/genetics , Seedlings/genetics
3.
Plant Genome ; 14(3): e20138, 2021 11.
Article in English | MEDLINE | ID: mdl-34482639

ABSTRACT

New breeding programs are faced with many challenges including evaluation of unknown germplasm, initiation of breeding populations that will satisfy short- and long-term breeding goals, and implementation of efficient phenotyping strategies for multiple traits. Genomic selection (GS) is a potentially valuable tool for recently established breeding programs to quickly accelerate genetic gain. Genomic selection on selection index (SI) values may increase gain over phenotypic selection but empirical studies remain limited. We compared gain in overall SI value for height, heading date, preharvest sprouting (PHS) resistance, and spot blotch resistance and component traits in two cycles of GS with one round of phenotypic selection (PS) in two-row spring malting barley (Hordeum vulgare L.). Higher realized gain for SI value, height, and PHS was observed with GS compared with PS but GS did not result in significant gain for heading date and spot blotch. Genetic variances for height and heading date, which had small index weights, were not reduced with GS but variances were substantially reduced for heavily weighted PHS and correlated seed germination traits. Inbreeding was increased by GS compared with PS but restricted mating of high breeding value individuals limited potential inbreeding. Our results indicate GS is a useful method to improve selection on index values with different weights.


Subject(s)
Hordeum , Genome , Genomics/methods , Hordeum/genetics , Plant Breeding/methods , Selection, Genetic
4.
J Environ Qual ; 46(6): 1323-1331, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293832

ABSTRACT

The Agricultural Policy Environmental eXtender (APEX) model is capable of estimating edge-of-field water, nutrient, and sediment transport and is used to assess the environmental impacts of management practices. The current practice is to fully calibrate the model for each site simulation, a task that requires resources and data not always available. The objective of this study was to compare model performance for flow, sediment, and phosphorus transport under two parameterization schemes: a best professional judgment (BPJ) parameterization based on readily available data and a fully calibrated parameterization based on site-specific soil, weather, event flow, and water quality data. The analysis was conducted using 12 datasets at four locations representing poorly drained soils and row-crop production under different tillage systems. Model performance was based on the Nash-Sutcliffe efficiency (NSE), the coefficient of determination () and the regression slope between simulated and measured annualized loads across all site years. Although the BPJ model performance for flow was acceptable (NSE = 0.7) at the annual time step, calibration improved it (NSE = 0.9). Acceptable simulation of sediment and total phosphorus transport (NSE = 0.5 and 0.9, respectively) was obtained only after full calibration at each site. Given the unacceptable performance of the BPJ approach, uncalibrated use of APEX for planning or management purposes may be misleading. Model calibration with water quality data prior to using APEX for simulating sediment and total phosphorus loss is essential.


Subject(s)
Agriculture , Phosphorus/analysis , Water Quality , Environmental Monitoring , Humans , Judgment , Models, Theoretical , Rivers , Water Movements
5.
J Environ Qual ; 46(6): 1349-1356, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293851

ABSTRACT

Phosphorus (P) Index assessment requires independent estimates of long-term average annual P loss from fields, representing multiple climatic scenarios, management practices, and landscape positions. Because currently available measured data are insufficient to evaluate P Index performance, calibrated and validated process-based models have been proposed as tools to generate the required data. The objectives of this research were to develop a regional parameterization for the Agricultural Policy Environmental eXtender (APEX) model to estimate edge-of-field runoff, sediment, and P losses in restricted-layer soils of Missouri and Kansas and to assess the performance of this parameterization using monitoring data from multiple sites in this region. Five site-specific calibrated models (SSCM) from within the region were used to develop a regionally calibrated model (RCM), which was further calibrated and validated with measured data. Performance of the RCM was similar to that of the SSCMs for runoff simulation and had Nash-Sutcliffe efficiency (NSE) > 0.72 and absolute percent bias (|PBIAS|) < 18% for both calibration and validation. The RCM could not simulate sediment loss (NSE < 0, |PBIAS| > 90%) and was particularly ineffective at simulating sediment loss from locations with small sediment loads. The RCM had acceptable performance for simulation of total P loss (NSE > 0.74, |PBIAS| < 30%) but underperformed the SSCMs. Total P-loss estimates should be used with caution due to poor simulation of sediment loss. Although we did not attain our goal of a robust regional parameterization of APEX for estimating sediment and total P losses, runoff estimates with the RCM were acceptable for P Index evaluation.


Subject(s)
Agriculture , Phosphorus/analysis , Water Quality , Environmental Monitoring , Kansas , Models, Theoretical , Water Movements
6.
J Environ Qual ; 46(6): 1332-1340, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293861

ABSTRACT

Process-based computer models have been proposed as a tool to generate data for Phosphorus (P) Index assessment and development. Although models are commonly used to simulate P loss from agriculture using managements that are different from the calibration data, this use of models has not been fully tested. The objective of this study is to determine if the Agricultural Policy Environmental eXtender (APEX) model can accurately simulate runoff, sediment, total P, and dissolved P loss from 0.4 to 1.5 ha of agricultural fields with managements that are different from the calibration data. The APEX model was calibrated with field-scale data from eight different managements at two locations (management-specific models). The calibrated models were then validated, either with the same management used for calibration or with different managements. Location models were also developed by calibrating APEX with data from all managements. The management-specific models resulted in satisfactory performance when used to simulate runoff, total P, and dissolved P within their respective systems, with > 0.50, Nash-Sutcliffe efficiency > 0.30, and percent bias within ±35% for runoff and ±70% for total and dissolved P. When applied outside the calibration management, the management-specific models only met the minimum performance criteria in one-third of the tests. The location models had better model performance when applied across all managements compared with management-specific models. Our results suggest that models only be applied within the managements used for calibration and that data be included from multiple management systems for calibration when using models to assess management effects on P loss or evaluate P Indices.


Subject(s)
Environmental Monitoring , Phosphorus/analysis , Water Movements , Agriculture , Calibration , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...