Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 11(1): 12067, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103612

ABSTRACT

Many lentiviral vectors used for gene therapy are derived from HIV-1. An optimal vector genome would include only the viral sequences required for transduction efficiency and gene expression to minimize the amount of foreign sequence inserted into a patient's genome. However, it remains unclear whether all of the HIV-1 sequence in vector genomes is essential. To determine which viral sequences are required, we performed a systematic deletion analysis, which showed that most of the gag region and over 50% of the env region could be deleted. Because the splicing profile for lentiviral vectors is poorly characterized, we used long-read sequencing to determine canonical and cryptic splice site usage. Deleting specific regions of env sequence reduced the number of splicing events per transcript and increased the proportion of unspliced genomes. Finally, combining a large deletion in gag with repositioning the Rev-response element downstream of the 3' R to prevent its reverse transcription showed that 1201 nucleotides of HIV-1 sequence can be removed from the integrated vector genome without substantially compromising transduction efficiency. Overall, this allows the creation of lentiviral vector genomes that contain minimal HIV-1 sequence, which could improve safety and transfer less viral sequence into a patient's DNA.


Subject(s)
Genetic Vectors/genetics , Genome, Viral , HIV-1/genetics , Transduction, Genetic , HEK293 Cells , Humans
2.
Mol Ther Methods Clin Dev ; 21: 574-584, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34095341

ABSTRACT

Lentiviral vectors are showing success in the clinic, but producing enough vector to meet the growing demand is a major challenge. Furthermore, next-generation gene therapy vectors encode multiple genes resulting in larger genome sizes, which is reported to reduce titers. A packaging limit has not been defined. The aim of this work was to assess the impact of genome size on the production of lentiviral vectors with an emphasis on producer cell mRNA levels, packaging efficiency, and infectivity measures. Consistent with work by others, vector titers reduced as genome size increased. While genomic infectivity accounted for much of this effect, genome sizes exceeding that of clinical HIV-1 isolates result in low titers due to a combination of both low genomic infectivity and decreased packaging efficiency. Manipulating the relative level of genomic RNA to gag-pol mRNA in the producer cells revealed a direct relationship between producer cell mRNA levels and packaging efficiency yet could not rescue packaging of oversized genomes, implying a de facto packaging defect. However, independent of genome size, an equimolar ratio between wild-type gag-pol mRNA and vector genomic RNA in producer cells was optimal for titer.

3.
Mol Ther Methods Clin Dev ; 19: 47-57, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-32995359

ABSTRACT

Stable suspension producer cell lines for the production of vesicular stomatitis virus envelope glycoprotein (VSVg)-pseudotyped lentiviral vectors represent an attractive alternative to current widely used production methods based on transient transfection of adherent 293T cells with multiple plasmids. We report here a method to rapidly generate such producer cell lines from 293T cells by stable transfection of a single DNA construct encoding all lentiviral vector components. The resulting suspension cell lines yield titers as high as can be achieved with transient transfection, can be readily scaled up in single-use stirred-tank bioreactors, and are genetically and functionally stable in extended cell culture. By removing the requirement for efficient transient transfection during upstream processing of lentiviral vectors and switching to an inherently scalable suspension cell culture format, we believe that this approach will result in significantly higher batch yields than are possible with current manufacturing processes and enable better patient access to medicines based on lentiviral vectors.

4.
J Virol ; 90(6): 3243-6, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26719267

ABSTRACT

Sequences necessary for transduction of human endogenous retrovirus (HERV)-Kcon, a consensus of the HERV-K(HML-2) family, were analyzed and found to reside in the leader/gag region. They act in an orientation-dependent way and consist of at least two sites working together. Having defined these sequences, we exploited this information to produce a simple system to investigate to what extent virions of HERV-Kcon, murine leukemia virus, and HIV-1 have the ability to transduce each other's genomes, leading to potential contamination of gene therapy vectors.


Subject(s)
Endogenous Retroviruses/genetics , HIV-1/genetics , Leukemia Virus, Murine/genetics , Transduction, Genetic , Cell Line , DNA, Viral/genetics , Gene Products, gag/genetics , Genetic Therapy/methods , Genetic Vectors , Humans
5.
Microbiology (Reading) ; 161(Pt 3): 648-61, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25525207

ABSTRACT

Mycobacterium smegmatis is a fast-growing, saprophytic, mycobacterial species that contains two cAMP-receptor protein (CRP) homologues designated herein as Crp1 and Crp2. Phylogenetic analysis suggests that Crp1 (Msmeg_0539) is uniquely present in fast-growing environmental mycobacteria, whereas Crp2 (Msmeg_6189) occurs in both fast- and slow-growing species. A crp1 mutant of M. smegmatis was readily obtained, but crp2 could not be deleted, suggesting it was essential for growth. A total of 239 genes were differentially regulated in response to crp1 deletion (loss of function), including genes coding for mycobacterial energy generation, solute transport and catabolism of carbon sources. To assess the role of Crp2 in M. smegmatis, the crp2 gene was overexpressed (gain of function) and transcriptional profiling studies revealed that 58 genes were differentially regulated. Identification of the CRP promoter consensus in M. smegmatis showed that both Crp1 and Crp2 recognized the same consensus sequence (TGTGN8CACA). Comparison of the Crp1- and Crp2-regulated genes revealed distinct but overlapping regulons with 11 genes in common, including those of the succinate dehydrogenase operon (MSMEG_0417-0420, sdh1). Expression of the sdh1 operon was negatively regulated by Crp1 and positively regulated by Crp2. Electrophoretic mobility shift assays with purified Crp1 and Crp2 demonstrated that Crp1 binding to the sdh1 promoter was cAMP-independent whereas Crp2 binding was cAMP-dependent. These data suggest that Crp1 and Crp2 respond to distinct signalling pathways in M. smegmatis to coordinate gene expression in response to carbon and energy supply.


Subject(s)
Bacterial Proteins/metabolism , Cyclic AMP Receptor Protein/metabolism , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbon/metabolism , Cyclic AMP Receptor Protein/chemistry , Cyclic AMP Receptor Protein/genetics , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium smegmatis/genetics , Operon , Promoter Regions, Genetic , Sequence Alignment
7.
PLoS One ; 7(2): e32371, 2012.
Article in English | MEDLINE | ID: mdl-22393401

ABSTRACT

Interleukin (IL-) 10 is a pleiotropic cytokine with broad immunosuppressive functions, particularly at mucosal sites such as the intestine and lung. Here we demonstrate that infection of BALB/c mice with respiratory syncytial virus (RSV) induced IL-10 production by CD4(+) and CD8(+) T cells in the airways at later time points (e.g. day 8); a proportion of these cells also co-produced IFN-γ. Furthermore, RSV infection of IL-10(-/-) mice resulted in more severe disease with enhanced weight loss, delayed recovery and greater cell infiltration of the respiratory tract without affecting viral load. In addition, IL-10(-/-) mice had a pronounced airway neutrophilia and heightened levels of pro-inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid. Notably, the proportion of lung T cells producing IFN-γ was enhanced, suggesting that IL-10 may act in an autocrine manner to dampen effector T cell responses. Similar findings were made in mice treated with anti-IL-10R antibody and infected with RSV. Therefore, IL-10 inhibits disease and inflammation in mice infected with RSV, especially during recovery from infection.


Subject(s)
Interleukin-10/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses/metabolism , Animals , Bronchoalveolar Lavage , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cytokines/metabolism , Inflammation , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Receptors, Interleukin-1/metabolism , Signal Transduction , T-Lymphocytes/metabolism
8.
J Bacteriol ; 194(9): 2307-20, 2012 May.
Article in English | MEDLINE | ID: mdl-22389481

ABSTRACT

The ESX-1 secretion system of Mycobacterium tuberculosis has to be precisely regulated since the secreted proteins, although required for a successful virulent infection, are highly antigenic and their continued secretion would alert the immune system to the infection. The transcription of a five-gene operon containing espACD-Rv3613c-Rv3612c, which is required for ESX-1 secretion and is essential for virulence, was shown to be positively regulated by the EspR transcription factor. Thus, transcription from the start site, found to be located 67 bp upstream of espA, was dependent upon EspR enhancer-like sequences far upstream (between 884 and 1,004 bp), which we term the espA activating region (EAR). The EAR contains one of the known binding sites for EspR, providing the first in vivo evidence that transcriptional activation at the espA promoter occurs by EspR binding to the EAR and looping out DNA between this site and the promoter. Regulation of transcription of this operon thus takes place over long regions of the chromosome. This regulation may differ in some members of the M. tuberculosis complex, including Mycobacterium bovis, since deletions of the intergenic region have removed the upstream sequence containing the EAR, resulting in lowered espA expression. Consequent differences in expression of ESX-1 in these bacteria may contribute to their various pathologies and host ranges. The virulence-critical nature of this operon means that transcription factors controlling its expression are possible drug targets.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Mycobacterium tuberculosis/metabolism , Operon , Transcription, Genetic , Bacterial Proteins/genetics , Base Sequence , Cloning, Molecular , Molecular Sequence Data , Multigene Family , Mycobacterium bovis/genetics , Mycobacterium bovis/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Promoter Regions, Genetic , Protein Binding , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...