Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 7665, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26184654

ABSTRACT

The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin-cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet-triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network.

2.
Nano Lett ; 13(10): 4870-5, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23987910

ABSTRACT

Crystal growth anisotropy in molecular beam epitaxy usually prevents deterministic nucleation of individual quantum dots when a thick GaAs buffer is grown over a nanopatterned substrate. Here, we demonstrate how this anisotropy can actually be used to mold nucleation sites for single dots on a much thicker buffer than has been achieved by conventional techniques. This approach greatly suppresses the problem of defect-induced line broadening for single quantum dots in a charge-tunable device, giving state-of-the-art optical linewidths for a system widely studied as a spin qubit for quantum information.


Subject(s)
Anisotropy , Arsenicals/chemistry , Indium/chemistry , Nanotechnology , Quantum Dots/chemistry , Crystallization , Gallium/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...