Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Mol Nutr Food Res ; : e2400431, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965660

ABSTRACT

SCOPE: A study is conducted to determine the anti-inflammatory effects of cocoa and polyphenol-rich cocoa fractions in the dextran sulfate sodium (DSS)-induced mouse model of acute colonic inflammation. METHODS AND RESULTS: Male C57BL/6J mice are treated with dietary cocoa powder, an extractable cocoa polyphenol fraction, or a non-extractable cocoa polyphenol fraction for 2 weeks prior to treatment with 2.5% DSS in the drinking water for 7 days to induce colonic inflammation. Cocoa treatment continues during the DSS period. Cocoa and/or cocoa fractions exacerbate DSS-induced weight loss and fail to mitigate DSS-induced colon shortening but do improve splenomegaly. Cocoa/cocoa fraction treatment fails to mitigate DSS-induced mRNA and protein markers of inflammation. Principal component analysis shows overlap between cocoa or cocoa fraction-treated mice and DSS-induced controls, but separation from mice not treated with DSS. CONCLUSION: The results suggest cocoa and cocoa polyphenols may not be useful in mitigating acute colonic inflammation.

2.
Am J Pharm Educ ; 88(3): 100670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350527

ABSTRACT

OBJECTIVE: This study aimed to measure the effects of graded vs ungraded individual readiness assurance tests (iRATs) on the students' test scores and achievement goals in a team-based learning classroom. METHODS: A 2 × 2 crossover study was conducted in a required second-year pharmacotherapy course. Teams 1 to 8 were assigned to a UG iRAT during the first half of the course, followed by a G iRAT the second half of the course (G/UG group). Teams 9 to 16 were assigned to the opposite grading sequence (ie, UG/G). A multivariate analysis of variance was used to analyze the differences in test scores, as measured using iRAT and examination scores. A separate multivariate analysis of variance was used to examine the differences in achievement goals. RESULTS: There was a significant difference in test scores based on the iRAT grading condition. Individual readiness assurance tests were higher in the G condition (72.51% vs 67.99%); however, the examination scores were similar in the G and UG conditions (81.07% vs 80.32%). There was no statistically significant difference in the achievement goals based on the iRAT grading condition. CONCLUSION: In a required second-year pharmacotherapy course that uses team-based learning, student performance on the iRAT was modestly lower in the UG iRAT condition; however, the students' examination scores were unchanged. Achievement goals were unchanged based on the iRAT grading condition.


Subject(s)
Education, Pharmacy , Educational Measurement , Humans , Cross-Over Studies , Students , Problem-Based Learning
3.
Trends Microbiol ; 32(3): 252-269, 2024 03.
Article in English | MEDLINE | ID: mdl-37758552

ABSTRACT

The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.


Subject(s)
Animals, Wild , Probiotics , Animals , Humans , Aquaculture
4.
Biology (Basel) ; 12(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38132295

ABSTRACT

Corals are facing a range of threats, including rises in sea surface temperature and ocean acidification. Some now argue that keeping corals ex situ (in aquaria), may be not only important but necessary to prevent local extinction, for example in the Florida Reef Tract. Such collections or are already becoming common place, especially in the Caribbean, and may act as an ark, preserving and growing rare or endangered species in years to come. However, corals housed in aquaria face their own unique set of threats. For example, hobbyists (who have housed corals for decades) have noticed seasonal mortality is commonplace, incidentally following months of peak pollen production. So, could corals suffer from hay fever? If so, what does the future hold? In short, the answer to the first question is simple, and it is no, corals cannot suffer from hay fever, primarily because corals lack an adaptive immune system, which is necessary for the diagnosis of such an allergy. However, the threat from pollen could still be real. In this review, we explore how such seasonal mortality could play out. We explore increases in reactive oxygen species, the role of additional nutrients and how the microbiome of the pollen may introduce disease or cause dysbiosis in the holobiont.

5.
J Nutr Biochem ; 120: 109428, 2023 10.
Article in English | MEDLINE | ID: mdl-37549832

ABSTRACT

High circulating levels of trimethylamine N-oxide (TMAO) have been associated with cardiovascular disease risk. TMAO is formed through a microbiome-host pathway utilizing primarily dietary choline as a substrate. Specific gut microbiota transform choline into trimethylamine (TMA), and, when absorbed, host hepatic flavin-containing monooxygenase 3 (FMO3) oxidizes TMA into TMAO. Chlorogenic acid and its metabolites reduce microbial TMA production in vitro. However, little is known regarding the potential for chlorogenic acid and its bioavailable metabolites to inhibit the last step: hepatic conversion of TMA to TMAO. We developed a screening methodology to study FMO3-catalyzed production of TMAO from TMA. HepG2 cells were unable to oxidize TMA into TMAO due to their lack of FMO3 expression. Although Hepa-1 cells did express FMO3 when pretreated with TMA and NADPH, they lacked enzymatic activity to produce TMAO. Rat hepatic microsomes contained active FMO3. Optimal reaction conditions were: 50 µM TMA, 0.2 mM NADPH, and 33 µL microsomes/mL reaction. Methimazole (a known FMO3 competitive substrate) at 200 µM effectively reduced FMO3-catalyzed conversion of TMA to TMAO. However, bioavailable chlorogenic acid metabolites did not generally inhibit FMO3 at physiological (1 µM) nor supra-physiological (50 µM) doses. Thus, the effects of chlorogenic acid in regulating TMAO levels in vivo are unlikely to occur through direct FMO3 enzyme inhibition. Potential effects on FMO3 expression remain unknown. Intestinal inhibition of TMA production and/or absorption are thus likely their primary mechanisms of action.


Subject(s)
Microsomes, Liver , Mixed Function Oxygenases , Rats , Animals , Microsomes, Liver/metabolism , Chlorogenic Acid , NADP , Phenols , Choline/metabolism
6.
Glob Chang Biol ; 29(17): 4731-4749, 2023 09.
Article in English | MEDLINE | ID: mdl-37435759

ABSTRACT

Climate change is fundamentally altering marine and coastal ecosystems on a global scale. While the effects of ocean warming and acidification on ecology and ecosystem functions and services are being comprehensively researched, less attention is directed toward understanding the impacts of human-driven ocean salinity changes. The global water cycle operates through water fluxes expressed as precipitation, evaporation, and freshwater runoff from land. Changes to these in turn modulate ocean salinity and shape the marine and coastal environment by affecting ocean currents, stratification, oxygen saturation, and sea level rise. Besides the direct impact on ocean physical processes, salinity changes impact ocean biological functions with the ecophysiological consequences are being poorly understood. This is surprising as salinity changes may impact diversity, ecosystem and habitat structure loss, and community shifts including trophic cascades. Climate model future projections (of end of the century salinity changes) indicate magnitudes that lead to modification of open ocean plankton community structure and habitat suitability of coral reef communities. Such salinity changes are also capable of affecting the diversity and metabolic capacity of coastal microorganisms and impairing the photosynthetic capacity of (coastal and open ocean) phytoplankton, macroalgae, and seagrass, with downstream ramifications on global biogeochemical cycling. The scarcity of comprehensive salinity data in dynamic coastal regions warrants additional attention. Such datasets are crucial to quantify salinity-based ecosystem function relationships and project such changes that ultimately link into carbon sequestration and freshwater as well as food availability to human populations around the globe. It is critical to integrate vigorous high-quality salinity data with interacting key environmental parameters (e.g., temperature, nutrients, oxygen) for a comprehensive understanding of anthropogenically induced marine changes and its impact on human health and the global economy.


Subject(s)
Aquatic Organisms , Ecosystem , Humans , Salinity , Climate Change , Coral Reefs , Seawater/chemistry
7.
Microbiol Mol Biol Rev ; 86(4): e0005322, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36287022

ABSTRACT

Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.


Subject(s)
Anthozoa , Animals , Anthozoa/microbiology , Anthozoa/physiology , Ecosystem , Coral Reefs , Bacteria , Archaea
8.
mSystems ; 7(4): e0036722, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862824

ABSTRACT

The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.


Subject(s)
Anthozoa , Microbiota , Animals , Bacteria/genetics , Microbiota/genetics , Metagenome , Biotechnology
9.
Nat Microbiol ; 7(11): 1726-1735, 2022 11.
Article in English | MEDLINE | ID: mdl-35864220

ABSTRACT

Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.


Subject(s)
Conservation of Natural Resources , Microbiota , Animals , Humans , Conservation of Natural Resources/methods , Biodiversity , Animals, Wild
10.
mSystems ; 7(4): e0032722, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35695425

ABSTRACT

Improving the availability of representative isolates from the coral microbiome is essential for investigating symbiotic mechanisms and applying beneficial microorganisms to improve coral health. However, few studies have explored the diversity of bacteria which can be isolated from a single species. Here, we isolated a total of 395 bacterial strains affiliated with 49 families across nine classes from the coral Pocillopora damicornis. Identification results showed that most of the strains represent potential novel bacterial species or genera. We also sequenced and assembled the genomes of 118 of these isolates, and then the putative functions of these isolates were identified based on genetic signatures derived from the genomes and this information was combined with isolate-specific phenotypic data. Genomic information derived from the isolates identified putative functions including nitrification and denitrification, dimethylsulfoniopropionate transformation, and supply of fixed carbon, amino acids, and B vitamins which may support their eukaryotic partners. Furthermore, the isolates contained genes associated with chemotaxis, biofilm formation, quorum sensing, membrane transport, signal transduction, and eukaryote-like repeat-containing and cell-cell attachment proteins, all of which potentially help the bacterium establish association with the coral host. Our work expands on the existing culture collection of coral-associated bacteria and provides important information on the metabolic potential of these isolates which can be used to refine understanding of the role of bacteria in coral health and are now available to be applied to novel strategies aimed at improving coral resilience through microbiome manipulation. IMPORTANCE Microbes underpin the health of corals which are the building blocks of diverse and productive reef ecosystems. Studying the culturable fraction of coral-associated bacteria has received less attention in recent times than using culture-independent molecular methods. However, the genomic and phenotypic characterization of isolated strains allows assessment of their functional role in underpinning coral health and identification of beneficial microbes for microbiome manipulation. Here, we isolated 395 bacterial strains from tissues of Pocillopora damicornis with many representing potentially novel taxa and therefore providing a significant contribution to coral microbiology through greatly enlarging the existing cultured coral-associated bacterial bank. Through analysis of the genomes obtained in this study for the coral-associated bacteria and coral host, we elucidate putative metabolic linkages and symbiotic establishment. The results of this study will help to elucidate the role of specific isolates in coral health and provide beneficial microbes for efforts aimed at improving coral health.


Subject(s)
Anthozoa , Microbiota , Animals , Anthozoa/genetics , Bacteria/genetics , Microbiota/genetics , Quorum Sensing , Genome
11.
J Healthc Qual ; 44(3): 152-160, 2022.
Article in English | MEDLINE | ID: mdl-35506711

ABSTRACT

BACKGROUND: Transitions of care can be difficult to manage and if not performed properly, can lead to increased readmissions and poor outcomes. Transitions are more complex when patients are discharged to skilled nursing facilities. PURPOSE: We assessed the impact of pharmacist-led initiatives, including medication reconciliation, on readmission rates between an academic medical center and a local skilled nursing facility (SNF). METHODS: We conducted a two-phase quality improvement project focusing on pharmacist-led medication reconciliation at different points in the transition process. All-cause 30-day readmission rates, medication reconciliation completion rates, and total pharmacist interventions were compared between the 2 groups. RESULTS: The combined intervention and baseline cohorts resulted in a 29.8% relative reduction (14.5% vs. 20.6%) in readmission rates. Medication reconciliation was completed on 93.8% of SNF admitted patients in the first phase and 97.7% of patients in the second phase. Pharmacist interventions per reconciliation were 2.39 in the first phase compared with 1.82 in the second phase. CONCLUSION: Pharmacist-led medication reconciliation can contribute to reduction of hospital readmissions from SNFs and is an essential part of the SNF transition process.


Subject(s)
Medication Reconciliation , Patient Readmission , Humans , Patient Discharge , Pharmacists , Skilled Nursing Facilities
12.
ISME J ; 16(4): 1086-1094, 2022 04.
Article in English | MEDLINE | ID: mdl-34853477

ABSTRACT

Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.


Subject(s)
Ecosystem , Predatory Behavior , Animals , Bacteria/genetics , Phylogeny , Sewage
13.
Front Microbiol ; 12: 749734, 2021.
Article in English | MEDLINE | ID: mdl-34803969

ABSTRACT

Streptococcus iniae is an emerging zoonotic pathogen of increasing concern for aquaculture and has caused several epizootics in reef fishes from the Caribbean, the Red Sea and the Indian Ocean. To study the population structure, introduction pathways and evolution of S. iniae over recurring epizootics on Reunion Island, we developed and validated a Multi Locus Sequence Typing (MLST) panel using genomic data obtained from 89 isolates sampled during epizootics occurring over the past 40years in Australia, Asia, the United States, Israel and Reunion Island. We selected eight housekeeping loci, which resulted in the greatest variation across the main S. iniae phylogenetic clades highlighted by the whole genomic dataset. We then applied the developed MLST to investigate the origin of S. iniae responsible for four epizootics on Reunion Island, first in inland aquaculture and then on the reefs from 1996 to 2014. Results suggest at least two independent S. iniae emergence events occurred on the island. Molecular data support that the first epizootic resulted from an introduction, with inland freshwater aquaculture facilities acting as a stepping-stone. Such an event may have been facilitated by the ecological flexibility of S. iniae, able to survive in both fresh and marine waters and the ability of the pathogen to infect multiple host species. By contrast, the second epizootic was associated with a distinct ST of cosmopolitan distribution that may have emerged as a result of environment disturbance. This novel tool will be effective at investigating recurrent epizootics occurring within a given environment or country that is despite the fact that S. iniae appears to have low genetic diversity within its lineage.

14.
Sci Adv ; 7(33)2021 08.
Article in English | MEDLINE | ID: mdl-34389536

ABSTRACT

Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed "post-heat stress disorder" was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.


Subject(s)
Anthozoa , Heat Stress Disorders , Microbiota , Animals , Anthozoa/genetics , Coral Reefs , Heat-Shock Response/genetics , Symbiosis
15.
mSystems ; 6(3): e0124920, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34156291

ABSTRACT

Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.

16.
Mol Ecol ; 30(9): 2009-2024, 2021 05.
Article in English | MEDLINE | ID: mdl-33655552

ABSTRACT

Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro-environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression of Acropora cf. pulchra colonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposed A. cf. pulchra to different flow regimes and acute heat stress. Notably, we observed distinct flow-driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host-photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high- and low-flow sites. Additionally, corals exposed to high flow showed "frontloading" of specific heat-stress-related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high-flow environments show higher survival and/or faster recovery in response to bleaching events.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , Heat-Shock Response/genetics , Symbiosis , Temperature
17.
Mol Ecol Resour ; 21(5): 1422-1433, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33655639

ABSTRACT

Global declines in biodiversity highlight the need to effectively monitor the density and distribution of threatened species. In recent years, molecular survey methods detecting DNA released by target-species into their environment (eDNA) have been rapidly on the rise. Despite providing new, cost-effective tools for conservation, eDNA-based methods are prone to errors. Best field and laboratory practices can mitigate some, but the risks of errors cannot be eliminated and need to be accounted for. Here, we synthesize recent advances in data processing tools that increase the reliability of interpretations drawn from eDNA data. We review advances in occupancy models to consider spatial data-structures and simultaneously assess rates of false positive and negative results. Further, we introduce process-based models and the integration of metabarcoding data as complementing approaches to increase the reliability of target-species assessments. These tools will be most effective when capitalizing on multi-source data sets collating eDNA with classical survey and citizen-science approaches, paving the way for more robust decision-making processes in conservation planning.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , DNA, Environmental/analysis , Conservation of Natural Resources , Environmental Monitoring , Reproducibility of Results
18.
Sci Total Environ ; 768: 144466, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736342

ABSTRACT

In recent years, eDNA-based assessments have evolved as valuable tools for research and conservation. Most eDNA-based applications rely on comparisons across time or space. However, temporal, and spatial dynamics of eDNA concentrations are shaped by various drivers that can affect the reliability of such comparative approaches. Here, we assessed (i) seasonal variability, (ii) degradation rates and (iii) micro-habitat heterogeneity of eDNA concentrations as key factors likely to inflict uncertainty in across site and time comparisons. In a controlled mesocosm experiment, using the white-clawed crayfish as a model organism, we found detection probabilities of technical replicates to vary substantially and range from as little as 20 to upwards of 80% between seasons. Further, degradation rates of crayfish eDNA were low and target eDNA was still detectable 14-21 days after the removal of crayfish. Finally, we recorded substantial small-scale in-situ heterogeneity and large variability among sampling sites in a single pond of merely 1000m2 in size. Consequently, all three tested drivers of spatial and temporal variation have the potential to severely impact the reliability of eDNA-based site comparisons and need to be accounted for in sampling design and data analysis of field-based applications.


Subject(s)
DNA , Ecosystem , Animals , Astacoidea/genetics , Reproducibility of Results , Seasons
19.
J Invertebr Pathol ; 186: 107538, 2021 11.
Article in English | MEDLINE | ID: mdl-33545133

ABSTRACT

'One World - One Health' is a developing concept which aims to explicitly incorporate linkages between the environment and human society into wildlife and human health care. Past work in the field has concentrated on aspects of disease, particularly emerging zoonoses, and focused on terrestrial systems. Here, we argue that marine environments are crucial components of the 'One World - One Health' framework, and that coral reefs are the epitome of its underlying philosophy. That is, they provide vast contributions to a wide range of ecosystem services with strong and direct links to human well-being. Further, the sensitivity of corals to climate change, and the current emergence of a wide range of diseases, make coral reefs ideal study systems to assess links, impacts, and feedback mechanisms that can affect human and ecosystem health. There are well established protocols for monitoring corals, as well as global networks of coral researchers, but there remain substantial challenges to understanding these complex systems, their health and links to provisioning of ecosystem services. We explore these challenges and conclude with a look at how developing technology offers potential ways of addressing them. We argue that a greater integration of coral reef research into the 'One World - One Health' framework will enrich our understanding of the many links within, and between, ecosystems and human society. This will ultimately support the development of measures for improving the health of both humans and the environment.


Subject(s)
Anthozoa/physiology , Climate Change , Coral Reefs , Ecosystem , One Health , Animals , Oceans and Seas
20.
Annu Rev Anim Biosci ; 9: 265-288, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33321044

ABSTRACT

The use of Beneficial Microorganisms for Corals (BMCs) has been proposed recently as a tool for the improvement of coral health, with knowledge in this research topic advancing rapidly. BMCs are defined as consortia of microorganisms that contribute to coral health through mechanisms that include (a) promoting coral nutrition and growth, (b) mitigating stress and impacts of toxic compounds, (c) deterring pathogens, and (d) benefiting early life-stage development. Here, we review the current proposed BMC approach and outline the studies that have proven its potential to increase coral resilience to stress. We revisit and expand the list of putative beneficial microorganisms associated with corals and their proposed mechanismsthat facilitate improved host performance. Further, we discuss the caveats and bottlenecks affecting the efficacy of BMCs and close by focusing on the next steps to facilitate application at larger scales that can improve outcomes for corals and reefs globally.


Subject(s)
Anthozoa/microbiology , Probiotics , Animals , Anthozoa/physiology , Dinoflagellida , Microbiota , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...