Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 13(12): 1908-11, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18258044

ABSTRACT

We investigated involvement of feral swine in contamination of agricultural fields and surface waterways with Escherichia coli O157:H7 after a nationwide outbreak traced to bagged spinach from California. Isolates from feral swine, cattle, surface water, sediment, and soil at 1 ranch were matched to the outbreak strain.


Subject(s)
Cattle/microbiology , Escherichia coli O157/isolation & purification , Spinacia oleracea , Swine/microbiology , Animals , Animals, Wild , California , Feces/microbiology , Gastrointestinal Contents/microbiology , Soil Microbiology
2.
Oecologia ; 146(1): 148-56, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16082561

ABSTRACT

Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 delta13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue delta13C of terrestrial and aquatic organisms. Such depletion in CO2 delta13C and its effects on tissue delta13C may introduce bias into delta13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 delta13C from ice cores and direct atmospheric measurements to model modern change in CO2 delta13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue delta13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 delta13C depletion, we applied the correction to a dataset of collagen delta13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen delta13C decreased significantly concurrent with depletion of atmospheric CO2 delta13C (n > or = 32, P < or = 0.01). Application of the correction to collagen delta13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range.


Subject(s)
Atmosphere , Carbon Isotopes/analysis , Food Chain , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...