Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 192(5): E163-E177, 2018 11.
Article in English | MEDLINE | ID: mdl-30332587

ABSTRACT

Phenological mismatch-maladaptive changes in phenology resulting from altered timing of environmental cues-is an increasing concern in many ecological systems, yet its effects on disease are poorly characterized. American lobster (Homarus americanus) is declining at its southern geographic limit. Rising seawater temperatures are associated with seasonal outbreaks of epizootic shell disease (ESD), which peaks in prevalence in the fall. We used a 34-year mark-recapture data set to investigate relationships between temperature, molting phenology, and ESD in Long Island Sound, where temperatures are increasing at 0.4°C per decade. Our analyses support the hypothesis that phenological mismatch is linked to the epidemiology of ESD. Warming spring temperatures are correlated with earlier spring molting. Lobsters lose diseased cuticle by molting, and early molting increases the intermolt period in the summer, when disease prevalence is increasing to a fall peak. In juvenile and adult male lobsters, September ESD prevalence was correlated with early molting, while October ESD prevalence was correlated with summer seawater temperature. This suggests that temperature-induced molting phenology affects the timing of the onset of ESD, but later in the summer this signal is swamped by the stronger signal of summer temperatures, which we hypothesize are associated with an increased rate of new infections. October ESD prevalence was ∼80% in years with hot summers and ∼30% in years with cooler summers. Yearly survival of diseased lobsters is <50% that of healthy lobsters. Thus, population impacts of ESD are expected to increase with increasing seawater temperatures.


Subject(s)
Molting , Nephropidae/physiology , Animal Shells/growth & development , Animal Shells/microbiology , Animal Shells/pathology , Animals , Atlantic Ocean , Bacterial Infections/epidemiology , Nephropidae/growth & development , Nephropidae/microbiology , Seasons , Temperature
2.
Ecol Appl ; 27(7): 2116-2127, 2017 10.
Article in English | MEDLINE | ID: mdl-28675580

ABSTRACT

Recent increases in emergent infectious diseases have raised concerns about the sustainability of some marine species. The complexity and expense of studying diseases in marine systems often dictate that conservation and management decisions are made without quantitative data on population-level impacts of disease. Mark-recapture is a powerful, underutilized, tool for calculating impacts of disease on population size and structure, even in the absence of etiological information. We applied logistic regression models to mark-recapture data to obtain estimates of disease-associated mortality rates in three commercially important marine species: snow crab (Chionoecetes opilio) in Newfoundland, Canada, that experience sporadic epizootics of bitter crab disease; striped bass (Morone saxatilis) in the Chesapeake Bay, USA, that experience chronic dermal and visceral mycobacteriosis; and American lobster (Homarus americanus) in the Southern New England stock, that experience chronic epizootic shell disease. All three diseases decreased survival of diseased hosts. Survival of diseased adult male crabs was 1% (0.003-0.022, 95% CI) that of uninfected crabs indicating nearly complete mortality of infected crabs in this life stage. Survival of moderately and severely diseased striped bass (which comprised 15% and 11% of the population, respectively) was 84% (70-100%, 95% CI), and 54% (42-68%, 95% CI) that of healthy striped bass. The disease-adjusted yearly natural mortality rate for striped bass was 0.29, nearly double the previously accepted value, which did not include disease. Survival of moderately and severely diseased lobsters was 30% (15-60%, 95% CI) that of healthy lobsters and survival of mildly diseased lobsters was 45% (27-75%, 95% CI) that of healthy lobsters. High disease mortality in ovigerous females may explain the poor recruitment and rapid declines observed in this population. Stock assessments should account for disease-related mortality when resource management options are evaluated.


Subject(s)
Bass , Brachyura/physiology , Fish Diseases , Fisheries , Longevity , Mycobacterium Infections/veterinary , Nephropidae/microbiology , Animals , Bacterial Physiological Phenomena , Brachyura/microbiology , Brachyura/parasitology , Connecticut , Dinoflagellida/physiology , Host-Parasite Interactions , Logistic Models , Maryland , Mycobacterium/physiology , Mycobacterium Infections/microbiology , Newfoundland and Labrador , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...