Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 15(7): 960-971, 2023 07.
Article in English | MEDLINE | ID: mdl-37264106

ABSTRACT

The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-L-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio and N-formyl-L-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and a m-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.


Subject(s)
Amino Acyl-tRNA Synthetases , Amino Acyl-tRNA Synthetases/genetics , Lysine/chemistry , Amino Acids , RNA, Transfer/genetics
2.
Proc Natl Acad Sci U S A ; 120(12): e2214512120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913566

ABSTRACT

Biocatalytic C-H activation has the potential to merge enzymatic and synthetic strategies for bond formation. FeII/αKG-dependent halogenases are particularly distinguished for their ability both to control selective C-H activation as well as to direct group transfer of a bound anion along a reaction axis separate from oxygen rebound, enabling the development of new transformations. In this context, we elucidate the basis for the selectivity of enzymes that perform selective halogenation to yield 4-Cl-lysine (BesD), 5-Cl-lysine (HalB), and 4-Cl-ornithine (HalD), allowing us to probe how site-selectivity and chain length selectivity are achieved. We now report the crystal structure of the HalB and HalD, revealing the key role of the substrate-binding lid in positioning the substrate for C4 vs C5 chlorination and recognition of lysine vs ornithine. Targeted engineering of the substrate-binding lid further demonstrates that these selectivities can be altered or switched, showcasing the potential to develop halogenases for biocatalytic applications.


Subject(s)
Amino Acids , Lysine , Halogenation , Ornithine
SELECTION OF CITATIONS
SEARCH DETAIL
...