Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Clin ; 37(4): 749-776, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34548132

ABSTRACT

The pathophysiology of acute respiratory distress syndrome (ARDS) is marked by inflammation-mediated disruptions in alveolar-capillary permeability, edema formation, reduced alveolar clearance and collapse/derecruitment, reduced compliance, increased pulmonary vascular resistance, and resulting gas exchange abnormalities due to shunting and ventilation-perfusion mismatch. Mechanical ventilation, especially in the setting of regional disease heterogeneity, can propagate ventilator-associated injury patterns including barotrauma/volutrauma and atelectrauma. Lung injury due to the novel coronavirus SARS-CoV-2 resembles other causes of ARDS, though its initial clinical characteristics may include more profound hypoxemia and loss of dyspnea perception with less radiologically-evident lung injury, a pattern not described previously in ARDS.


Subject(s)
COVID-19 , Lung Injury , Respiratory Distress Syndrome , Humans , Lung , Lung Injury/etiology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
2.
Pflugers Arch ; 473(8): 1273-1285, 2021 08.
Article in English | MEDLINE | ID: mdl-34231059

ABSTRACT

Myocardial infarction (MI) is one of the leading causes of death worldwide. Prognosis and mortality rate are directly related to infarct size and post-infarction pathological heart remodeling, which can lead to heart failure. Hypoxic MI-affected areas increase the expression of hypoxia-inducible factor (HIF-1), inducing infarct size reduction and improving cardiac function. Hypoxia translocates HIF-1 to the nucleus, activating carbonic anhydrase IX (CAIX) transcription. CAIX regulates myocardial intracellular pH, critical for heart performance. Our objective was to investigate CAIX participation and relation with sodium bicarbonate transporters 1 (NBC1) and HIF-1 in cardiac remodeling after MI. We analyzed this pathway in an "in vivo" rat coronary artery ligation model and isolated cardiomyocytes maintained under hypoxia. Immunohistochemical studies revealed an increase in HIF-1 levels after 2 h of infarction. Similar results were observed in 2-h infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes with a nuclear distribution (confocal microscopy). Immunohistochemical studies showed an increase CAIX in the infarcted area at 2 h, mainly distributed throughout the cell and localized in the plasma membrane at 24 h. Similar results were observed in 2 h in infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes (confocal microscopy). NBC1 expression increased in cardiac tissue after 2 h of infarction (immunoblotting). CAIX and NBC1 interaction increases in cardiac tissue subjected to MI for 2h when CAIX is present (immunoprecipitation). These results suggest that CAIX interacts with NBC1 in our infarct model as a mechanism to prevent acidic damage in hypoxic tissue, making it a promising therapeutic target.


Subject(s)
Carbonic Anhydrase IX/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/enzymology , Myocardial Infarction/enzymology , Sodium-Bicarbonate Symporters/metabolism , Animals , Male , Primary Cell Culture , Rats, Wistar , Ventricular Remodeling
4.
High Alt Med Biol ; 21(2): 176-183, 2020 06.
Article in English | MEDLINE | ID: mdl-32182144

ABSTRACT

Background: The stress of high altitude alters vascular permeability, which may be related to structural changes in the endothelial glycocalyx. We aimed to study these changes by measuring plasma concentrations of several glycocalyx components upon exposure to high altitude. Methods: Plasma collected from 17 subjects at low altitude (423 m) and at three time points (7, 20, and 44 hours) after rapid ascent to high altitude (4559 m) were evaluated for concentrations of three glycocalyx components: syndecan-1, intercellular adhesion molecule-1 (ICAM-1), and heparan sulfate. Vital signs and echocardiographic measurement of systolic pulmonary artery pressure (sPAP) and cardiac output were also obtained at low and high altitudes. Results: Mean age of the study population was 35.5 ± 11.2 years with a body mass index of 22.7 ± 2.5 kg/m2. Concentrations of ICAM-1 and heparan sulfate increased from baseline to 7 hours after arrival at high altitude; the ICAM-1 rise persisted at 20 hours. Syndecan-1 concentrations were increased only at 44 hours. Increased ICAM-1 concentrations correlated with sPAP and peripheral edema. Elevations in heparan sulfate appeared to correlate with acute mountain sickness (AMS). Conclusions: Levels of circulating glycocalyx components increase after exposure to high altitude and may correlate with AMS. Measuring plasma concentrations of various glycocalyx components could serve as a useful tool for further evaluation of vascular endothelial injury and repair in illness at high altitude.


Subject(s)
Altitude Sickness , Glycocalyx , Acute Disease , Adult , Altitude , Endothelium, Vascular , Humans , Middle Aged , Plasma , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...