Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(21): 13506-13516, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748456

ABSTRACT

Spin-orbit torques (SOT) allow ultrafast, energy-efficient toggling of magnetization state by an in-plane charge current for applications such as magnetic random-access memory (SOT-MRAM). Tailoring the SOT vector comprising of antidamping (TAD) and fieldlike (TFL) torques could lead to faster, more reliable, and low-power SOT-MRAM. Here, we establish a method to quantify the longitudinal (TAD) and transverse (TFL) components of the SOT vector and its efficiency χAD and χFL, respectively, in nanoscale three-terminal SOT magnetic tunnel junctions (SOT-MTJ). Modulation of nucleation or switching field (BSF) for magnetization reversal by SOT effective fields (BSOT) leads to the modification of SOT-MTJ hysteresis loop behavior from which χAD and χFL are quantified. Surprisingly, in nanoscale W/CoFeB SOT-MTJ, we find χFL to be (i) twice as large as χAD and (ii) 6 times as large as χFL in micrometer-sized W/CoFeB Hall-bar devices. Our quantification is supported by micromagnetic and macrospin simulations which reproduce experimental SOT-MTJ Stoner-Wohlfarth astroid behavior only for χFL > χAD. Additionally, from the threshold current for current-induced magnetization switching with a transverse magnetic field, we show that in SOT-MTJ, TFL plays a more prominent role in magnetization dynamics than TAD. Due to SOT-MRAM geometry and nanodimensionality, the potential role of nonlocal spin Hall spin current accumulated adjacent to the SOT-MTJ in the mediation of TFL and χFL amplification merits to be explored.

2.
ACS Appl Mater Interfaces ; 11(37): 34385-34393, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31449744

ABSTRACT

The recent demonstration of ferroelectricity in ultrathin HfO2 has kickstarted a new wave of research into this material. HfO2 in the orthorhombic phase can be considered the first and only truly nanoscale ferroelectric material that is compatible with silicon-based nanoelectronics applications. In this article, we demonstrate the ferroelectric control of the magnetic properties of cobalt deposited on ultrathin aluminum-doped, atomic layer deposition-grown HfO2 (tHfO2 = 6.5 nm). The ferroelectric effect is shown to control the shape of the magnetic hysteresis, quantified here by the magnetic switching energy. Furthermore, the magnetic properties such as the remanence are modulated by up to 41%. We show that this modulation does not only correlate with the charge accumulation at the interface but also shows an additional component associated with the ferroelectric polarization switching. An in-depth analysis using first order reversal curves shows that the coercive and interaction field distributions of cobalt can be modulated up to, respectively, 5.8% and 10.5% with the ferroelectric polarization reversal.

SELECTION OF CITATIONS
SEARCH DETAIL
...