Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(17): 173001, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172243

ABSTRACT

To test bound-state quantum electrodynamics (BSQED) in the strong-field regime, we have performed high precision x-ray spectroscopy of the 5g-4f and 5f- 4d transitions (BSQED contribution of 2.4 and 5.2 eV, respectively) of muonic neon atoms in the low-pressure gas phase without bound electrons. Muonic atoms have been recently proposed as an alternative to few-electron high-Z ions for BSQED tests by focusing on circular Rydberg states where nuclear contributions are negligibly small. We determined the 5g_{9/2}- 4f_{7/2} transition energy to be 6297.08±0.04(stat)±0.13(syst) eV using superconducting transition-edge sensor microcalorimeters (5.2-5.5 eV FWHM resolution), which agrees well with the most advanced BSQED theoretical prediction of 6297.26 eV.

2.
J Low Temp Phys ; 209(5-6)2022.
Article in English | MEDLINE | ID: mdl-37427309

ABSTRACT

The nonlinear energy response of cryogenic microcalorimeters is usually corrected through an empirical calibration. X-ray or gamma-ray emission lines of known shape and energy anchor a smooth function that generalizes the calibration data and converts detector measurements to energies. We argue that this function should be an approximating spline. The theory of Gaussian process regression makes a case for this functional form. It also provides an important benefit previously absent from our calibration method: a quantitative uncertainty estimate for the calibrated energies, with lower uncertainty near the best-constrained calibration points.

3.
Metrologia ; 58(1)2021 Feb.
Article in English | MEDLINE | ID: mdl-34354301

ABSTRACT

We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also surveys numerous x-ray standards in order to establish an absolute-energy calibration traceable to the international system of units for the energy range 4 keV to 10 keV. The new results include emission line profiles for 97 lines, each expressed as a sum of one or more Voigt functions; improved absolute energy uncertainty on 71 of these lines relative to existing reference data; a median uncertainty on the peak energy of 0.24 eV, four to ten times better than the median of prior work; and six lines that lack any measured values in existing reference tables. The 97 lines comprise nearly all of the most intense L lines from these elements under broad-band x-ray excitation. The work improves on previous measurements made with a similar cryogenic spectrometer by the use of sensors with better linearity in the absorbed energy and a gold x-ray absorbing layer that has a Gaussian energy-response function. It also employs a novel sample holder that enables rapid switching between science targets and calibration targets with excellent gain balancing. Most of the results for peak energy values shown here should be considered as replacements for the currently tabulated standard reference values, while the line shapes given here represent a significant expansion of the scope of available reference data.

4.
Phys Rev Lett ; 127(5): 053001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397250

ABSTRACT

We observed electronic K x rays emitted from muonic iron atoms using superconducting transition-edge sensor microcalorimeters. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic Kα and Kß x rays together with the hypersatellite K^{h}α x rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the L-shell electrons, accompanied by electron side feeding. Assisted by a simulation, these data clearly reveal the electronic K- and L-shell hole production and their temporal evolution on the 10-20 fs scale during the muon cascade process.

5.
IEEE Trans Appl Supercond ; 29(5)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31360051

ABSTRACT

Readout of a large, spacecraft-based array of superconducting transition-edge sensors (TESs) requires careful management of the layout area and power dissipation of the cryogenic-circuit components. We present three optimizations of our time- (TDM) and code-division-multiplexing (CDM) systems for the X-ray Integral Field Unit (X-IFU), a several-thousand-pixel-TES array for the planned Athena-satellite mission. The first optimization is a new readout scheme that is a hybrid of CDM and TDM. This C/TDM architecture balances CDM's noise advantage with TDM's layout compactness. The second is a redesign of a component: the shunt resistor that provides a dc-voltage bias to the TESs. A new layout and a thicker Pd-Au resistive layer combine to reduce this resistor's area by more than a factor of 5. Third, we have studied the power dissipated by the first-stage SQUIDs (superconducting quantum-interference devices) and the readout noise versus the critical current of the first-stage SqUIDs. As a result, the X-IFU TDM and C/TDM SQUIDs will have a specified junction critical current of 5 µA. Based on these design optimizations and TDM experiments described by Durkin, et al. (these proceedings), TDM meets all requirements to be X-IFU's backup-readout option. Hybrid C/TDM is another viable option that could save spacecraft resources.

6.
Article in English | MEDLINE | ID: mdl-31186605

ABSTRACT

With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times. Here, we discuss initial results of this technique obtained with 2 eV and 0.7 eV resolution X-ray microcalorimeters. With the 2 eV detector, we have achieved photon number resolution for pulses with mean photon number up to 133 (corresponding to 0.4 keV).

7.
Article in English | MEDLINE | ID: mdl-31160861

ABSTRACT

Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3,168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for ESA's Athena satellite mission. X-0IFU design studies are considering readout with a multiplexing factor of up to 40. We present data showing 40-row TDM readout (32 TES rows + 8 repeats of the last row) of TESs that are of the same type as those being planned for X-IFU, using measurement and analysis parameters within the ranges specified for X-IFU. Singlecolumn TDM measurements have best-fit energy resolution of (1.91 ± 0.01) eV for the Al Kα complex (1.5 keV), (2.10 ± 0.02) eV for Ti Kα (4.5 keV), (2.23 ± 0.02) eV for Mn Kα (5.9 keV), (2.40 ± 0.02) eV for Co Kα (6.9 keV), and (3.44 ± 0.04) eV for Br Kα (11.9 keV). Three-column measurements have best-fit resolution of (2.03 ± 0.01) eV for Ti Kα and (2.40 ± 0.01) eV for Co Kα. The degradation due to the multiplexed readout ranges from 0.1 eV at the lower end of the energy range to 0.5 eV at the higher end. The demonstrated performance meets X-IFU's energy-resolution and energy-range requirements. True 40-row TDM readout, without repeated rows, of kilopixel scale arrays of X-IFU-like TESs is now under development.

8.
Article in English | MEDLINE | ID: mdl-33335337

ABSTRACT

Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more. The desire for fast X-ray pulses that accommodate photon counting rates of hundreds or thousands of counts per second per sensor drives system design toward high sensor current slew rate. Typically, readout of high current slew rate events is accomplished by increasing the sampling rate, such that rates of order 1MHz may be necessary for some experiments. In our microwave multiplexed readout scheme, the effective sampling rate is set by the frequency of the flux-ramp modulation (f r) used to linearize the SQUID response. The maximum current slew rate between samples is then nominally Φ 0 f r/2M in (where M in is the input coupling) because it is generally not possible to distinguish phase shifts of > π from negative phase shifts of < -π. However, during a pulse, we know which direction the current ought to be slewing, and this makes it possible to reconstruct a pulse where the magnitude of the phase shift between samples is > π. We describe a practical algorithm to identify and reconstruct pulses that exceed this nominal slew rate limit on the rising edge. Using pulses produced by X-ray transition-edge sensors, we find that the pulse reconstruction has a negligible impact on energy resolution compared to arrival time effects induced by under-sampling the rising edge. This technique can increase the effective slew rate limit by more than a factor of two, thereby either reducing the resonator bandwidth required or extending the energy range of measurable photons. The extra margin could also be used to improve crosstalk or to decrease readout noise.

9.
J Low Temp Phys ; 199(3-4)2019.
Article in English | MEDLINE | ID: mdl-33364637

ABSTRACT

A principal component analysis (PCA) of clean microcalorimeter pulse records can be a first step beyond statistically optimal linear filtering of pulses toward a fully nonlinear analysis. For PCA to be practical on spectrometers with hundreds of sensors, an automated identification of clean pulses is required. Robust forms of PCA are the subject of active research in machine learning. We examine a version known as coherence pursuit that is simple and fast and well matched to the automatic identification of outlier records, as needed for microcalorimeter pulse analysis.

10.
Rev Sci Instrum ; 90(12): 123107, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893849

ABSTRACT

We report on the design, commissioning, and initial measurements of a Transition-Edge Sensor (TES) x-ray spectrometer for the Electron Beam Ion Trap (EBIT) at the National Institute of Standards and Technology (NIST). Over the past few decades, the NIST EBIT has produced numerous studies of highly charged ions in diverse fields such as atomic physics, plasma spectroscopy, and laboratory astrophysics. The newly commissioned NIST EBIT TES Spectrometer (NETS) improves the measurement capabilities of the EBIT through a combination of high x-ray collection efficiency and resolving power. NETS utilizes 192 individual TES x-ray microcalorimeters (166/192 yield) to improve upon the collection area by a factor of ∼30 over the 4-pixel neutron transmutation doped germanium-based microcalorimeter spectrometer previously used at the NIST EBIT. The NETS microcalorimeters are optimized for the x-ray energies from roughly 500 eV to 8000 eV and achieve an energy resolution of 3.7 eV-5.0 eV over this range, a more modest (<2×) improvement over the previous microcalorimeters. Beyond this energy range, NETS can operate with various trade-offs, the most significant of which are reduced efficiency at lower energies and being limited to a subset of the pixels at higher energies. As an initial demonstration of the capabilities of NETS, we measured transitions in He-like and H-like O, Ne, and Ar as well as Ni-like W. We detail the energy calibration and data analysis techniques used to transform detector counts into x-ray spectra, a process that will be the basis for analyzing future data.

11.
Rev Sci Instrum ; 88(5): 053108, 2017 May.
Article in English | MEDLINE | ID: mdl-28571411

ABSTRACT

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

12.
J Low Temp Phys ; 184(1): 389-395, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27325902

ABSTRACT

Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 µΦ0/√Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 µΦ0/√Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55±0.01 eV at 6 keV.

13.
J Synchrotron Radiat ; 22(3): 766-75, 2015 May.
Article in English | MEDLINE | ID: mdl-25931095

ABSTRACT

X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

14.
Eur Phys J C Part Fields ; 75(3): 112, 2015.
Article in English | MEDLINE | ID: mdl-25995704

ABSTRACT

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of [Formula: see text]Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted [Formula: see text]Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

15.
J Low Temp Phys ; 1842015 Dec 29.
Article in English | MEDLINE | ID: mdl-33087985

ABSTRACT

For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to be a leading source of experimental error. Although Wiener filtering can be used to recognize pile-up, it suffers errors due to pulse-shape variation from detector nonlinearity, readout dependence on sub-sample arrival times, and stability issues from the ill-posed deconvolution problem of recovering Dirac delta-functions from smooth data. Due to these factors, we have developed a processing method that exploits singular value decomposition to (1) separate single-pulse records from piled-up records in training data and (2) construct a model of single-pulse records that accounts for varying pulse shape with amplitude, arrival time, and baseline level, suitable for detecting nearly-coincident events. We show that the resulting processing advances can reduce the required performance specifications of the detectors and readout system or, equivalently, enable larger sensor arrays and better constraints on the neutrino mass.

16.
J Low Temp Phys ; 184(1-2): 374-381, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-38516044

ABSTRACT

The analysis of data from x-ray microcalorimeters requires great care; their excellent intrinsic energy resolution cannot usually be achieved in practice without a statistically near-optimal pulse analysis and corrections for important systematic errors. We describe the essential parts of a pulse-analysis pipeline for data from x-ray microcalorimeters, including steps taken to reduce systematic gain variation and the unwelcome dependence of filtered pulse heights on the exact pulse-arrival time. We find these steps collectively to be essential tools for getting the best results from a microcalorimeter-based x-ray spectrometer.

17.
Phys Rev Lett ; 110(13): 138302, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581383

ABSTRACT

This work presents an x-ray absorption measurement by use of ionizing radiation generated by a femtosecond pulsed laser source. The spectrometer was a microcalorimetric array whose pixels are capable of accurately measuring energies of individual radiation quanta. An isotropic continuum x-ray spectrum in the few-keV range was generated from a laser plasma source with a water-jet target. X rays were transmitted through a ferrocene powder sample to the detector, whose pixels have average photon energy resolution ΔE=3.14 eV full-width-at-half-maximum at 5.9 keV. The bond distance of ferrocene was retrieved from this first hard-x-ray absorption fine-structure spectrum collected with an energy-dispersive detector. This technique will be broadly enabling for time-resolved observations of structural dynamics in photoactive systems.

18.
Rev Sci Instrum ; 83(9): 093113, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23020368

ABSTRACT

Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm(2). We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

19.
Appl Opt ; 46(17): 3444-54, 2007 Jun 10.
Article in English | MEDLINE | ID: mdl-17514303

ABSTRACT

The Atacama Cosmology Telescope is a 6 m telescope designed to map the cosmic microwave background simultaneously at 145, 215, and 280 GHz with arcminute resolution. Each frequency will have a 32 by 32 element focal plane array of transition edge sensor bolometers. The telescope and the cold reimaging optics are optimized for millimeter-wave observations with these sensitive detectors. The design of each is described.

SELECTION OF CITATIONS
SEARCH DETAIL
...