Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1790, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379805

ABSTRACT

Despite the recent clinical success of T cell checkpoint inhibition targeting the CTLA-4 and PD-1 pathways, many patients either fail to achieve objective responses or they develop resistance to therapy. In some cases, poor responses to checkpoint blockade have been linked to suboptimal CD28 costimulation and the inability to generate and maintain a productive adaptive anti-tumor immune response. To address this, here we utilize directed evolution to engineer a CD80 IgV domain with increased PD-L1 affinity and fuse this to an immunoglobulin Fc domain, creating a therapeutic (ALPN-202, davoceticept) capable of providing CD28 costimulation in a PD-L1-dependent fashion while also antagonizing PD-1 - PD-L1 and CTLA-4-CD80/CD86 interactions. We demonstrate that by combining CD28 costimulation and dual checkpoint inhibition, ALPN-202 enhances T cell activation and anti-tumor efficacy in cell-based assays and mouse tumor models more potently than checkpoint blockade alone and thus has the potential to generate potent, clinically meaningful anti-tumor immunity in humans.


Subject(s)
CD28 Antigens , Neoplasms , Animals , B7-1 Antigen/metabolism , CD28 Antigens/metabolism , Humans , Lymphocyte Activation , Mice , Neoplasms/drug therapy , Neoplasms/genetics , T-Lymphocytes
2.
Sci Transl Med ; 12(564)2020 10 07.
Article in English | MEDLINE | ID: mdl-33028709

ABSTRACT

Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD.


Subject(s)
CD28 Antigens , Graft vs Host Disease , Abatacept , Animals , Dendritic Cells , Graft vs Host Disease/drug therapy , Inducible T-Cell Co-Stimulator Protein , Leukocytes, Mononuclear , Mice
3.
Sci Transl Med ; 9(402)2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28794282

ABSTRACT

Broadly neutralizing antibodies (BnAbs) protect macaques from cell-free simian/human immunodeficiency virus (SHIV) challenge, but their efficacy against cell-associated SHIV is unclear. Virus in cell-associated format is highly infectious, present in transmission-competent bodily fluids, and potentially capable of evading antibody-mediated neutralization. The PGT121 BnAb, which recognizes an epitope consisting of the V3 loop and envelope glycans, mediates antibody-dependent cellular cytotoxicity and neutralization of cell-to-cell HIV-1 transmission. To evaluate whether a BnAb can prevent infection after cell-associated viral challenge, we infused pigtail macaques with PGT121 or an isotype control and challenged animals 1 hour later intravenously with SHIVSF162P3-infected splenocytes. All five controls had high viremia 1 week after challenge. Three of six PGT121-infused animals were completely protected, two of six animals had a 1-week delay in onset of high viremia, and one animal had a 7-week delay in onset of viremia. The infused antibody had decayed on average to 2.0 µg/ml by 1 week after infusion and was well below 1 µg/ml (range, <0.1 to 0.8 µg/ml) by 8 weeks. The animals with a 1-week delay before high viremia had relatively lower plasma concentrations of PGT121. Transfer of 22 million peripheral blood mononuclear cells (PBMCs) stored at weeks 1 to 4 from the animal with the 7-week delayed onset of viremia into uninfected macaques did not initiate infection. Our results show that HIV-1-specific neutralizing antibodies have partial efficacy against cell-associated virus exposure in macaques. We conclude that sustaining high concentrations of bioavailable BnAb is important for protecting against cell-associated virus.


Subject(s)
Antibodies, Neutralizing/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , Animals , Antibody Formation/immunology , Humans , Macaca , Male , Viremia/immunology
4.
Hum Vaccin Immunother ; 12(2): 474-7, 2016.
Article in English | MEDLINE | ID: mdl-26325257

ABSTRACT

Influenza infection can give rise to serious illness leading to complications and hospitalization of patients. The efficacy of current standard of care is very limited and provides little relief for patients hospitalized with serious flu. Human monoclonal antibodies (mAb) against influenza are being developed as new treatment options for this patient population. When developing antibody therapeutics, it is important to consider all possible immunologic effects of the antibodies on viral infection and disease progression including those other than the postulated therapeutic mechanisms. An area of concern is the potential of antibody-dependent enhancement (ADE) of illness. ADE of viral infections has been extensively described for Dengue virus (DENV) but not for influenza. Recently, preliminary results from clinical viral challenge studies of anti-HA-stalk mAbs suggested the possibility of enhanced viral shedding, raising concerns for ADE when utilizing mAbs as therapeutic intervention for influenza although viral shedding was not enhanced in the clinical viral challenge of anti-M2 mAb TCN-032. We herein discuss the known mechanisms of ADE and their relevance to developing mAbs such as anti-HA and anti-M2 for influenza disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Enhancement/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunotherapy/adverse effects , Immunotherapy/methods , Influenza, Human/therapy , Viral Matrix Proteins/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Influenza, Human/immunology , Virus Shedding/immunology
5.
J Infect Dis ; 211(7): 1038-44, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25281755

ABSTRACT

BACKGROUND: The efficacy of TCN-032, a human monoclonal antibody targeting a conserved epitope on M2e, was explored in experimental human influenza. METHODS: Healthy volunteers were inoculated with influenza A/Wisconsin/67/2005 (H3N2) and received a single dose of the study drug, TCN-032, or placebo 24 hours later. Subjects were monitored for symptoms, viral shedding, and safety, including cytokine measurements. Oseltamivir was administered 7 days after inoculation. RESULTS: Although the primary objective of reducing the proportion of subjects developing any grade ≥2 influenza symptom or pyrexia, was not achieved, TCN-032-treated subjects showed 35% reduction (P = .047) in median total symptom area under the curve (days 1-7) and 2.2 log reduction in median viral load area under the curve (days 2-7) by quantitative polymerase chain reaction (P = .09) compared with placebo-treated subjects. TCN-032 was safe and well tolerated with no additional safety signals after administration of oseltamivir. Serum cytokine levels (interferon γ, tumor necrosis factor α, and interleukin 8 and 10) were similar in both groups. Genotypic and phenotypic analyses showed no difference between virus derived from subjects after TCN-032 treatment and parental strain. CONCLUSIONS: These data indicate that TCN-032 may provide immediate immunity and therapeutic benefit in influenza A infection, with no apparent emergence of resistant virus. TCN-032 was safe with no evidence of immune exacerbation based on serum cytokine expression. Clinicaltrials.gov registry number. NCT01719874.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunologic Factors/therapeutic use , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/drug therapy , Oseltamivir/administration & dosage , Adolescent , Adult , Cytokines/blood , Double-Blind Method , Female , Humans , Influenza A Virus, H3N2 Subtype/drug effects , Influenza, Human/immunology , Influenza, Human/virology , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Viral Load , Virus Shedding , Young Adult
6.
Yeast ; 22(3): 219-39, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15704212

ABSTRACT

Eukaryotic chaperonins, the Cct complexes, are assembled into two rings, each of which is composed of a stoichiometric array of eight different subunits, which are denoted Cct1p-Cct8p. Overexpression of a single CCT gene in Saccharomyces cerevisiae causes an increase of the corresponding Cct subunit, but not of the Cct complex. Nevertheless, overexpression of certain Cct subunits, especially CCT6, suppresses a wide range of abnormal phenotypes, including those caused by the diverse types of conditional mutations tor2-21, lst8-2 and rsp5-9 and those caused by the concomitant overexpression of Sit4p and Sap155p. The examination of 73 altered forms of Cct6p revealed that the cct6-24 mutation, containing GDGTT --> AAAAA replacements of the conserved ATP-binding motif, was unable to suppress any of these traits, although the cct6-24 allele was completely functional for growth. These results provide evidence for functional differences among Cct subunits and for physiological properties of unassembled subunits. We suggest that the suppression is due to the competition of specific Cct subunits for activities that normally modify various cellular components. Furthermore, we also suggest that the Cct subunits can act as suppressors only in certain states, such as when associated with ATP.


Subject(s)
Chaperonins/physiology , Saccharomyces cerevisiae/physiology , Chaperonin Containing TCP-1 , Chaperonins/biosynthesis , Chaperonins/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Fungal , Mass Spectrometry , Models, Biological , Plasmids , Polymerase Chain Reaction , Protein Multimerization , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Signal Transduction/genetics , Signal Transduction/physiology
7.
J Virol ; 79(6): 3254-66, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15731220

ABSTRACT

We had previously demonstrated that a cellular protein specifically interacts with the 3' end of poliovirus negative-strand RNA. We now report the identity of this protein as heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Formation of an RNP complex with poliovirus RNA was severely impaired by substitution of a lysine, highly conserved among vertebrates, with glutamine in the RNA recognition motif (RRM) of recombinant hnRNP C1, suggesting that the binding is mediated by the RRM in the protein. We have also shown that in a glutathione S-transferase (GST) pull-down assay, GST/hnRNP C1 binds to poliovirus polypeptide 3CD, a precursor to the viral RNA-dependent RNA polymerase, 3D(pol), as well as to P2 and P3, precursors to the nonstructural proteins. Truncation of the auxiliary domain in hnRNP C1 (C1DeltaC) diminished these protein-protein interactions. When GST/hnRNP C1DeltaC was added to in vitro replication reactions, a significant reduction in RNA synthesis was observed in contrast to reactions supplemented with wild-type fusion protein. Indirect functional depletion of hnRNP C from in vitro replication reactions, using poliovirus negative-strand cloverleaf RNA, led to a decrease in RNA synthesis. The addition of GST/hnRNP C1 to the reactions rescued RNA synthesis to near mock-depleted levels. Furthermore, we demonstrated that poliovirus positive-strand and negative-strand RNA present in cytoplasmic extracts prepared from infected HeLa cells coimmunoprecipitated with hnRNP C1/C2. Our findings suggest that hnRNP C1 has a role in positive-strand RNA synthesis in poliovirus-infected cells, possibly at the level of initiation.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Poliovirus/physiology , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism , 3C Viral Proteases , Amino Acid Substitution , Cysteine Endopeptidases/metabolism , HeLa Cells , Humans , Protein Binding , Sequence Deletion
8.
Proc Natl Acad Sci U S A ; 100(26): 15416-21, 2003 Dec 23.
Article in English | MEDLINE | ID: mdl-14676325

ABSTRACT

The targeting of molecular repertoires to complex systems rather than biochemically pure entities is an accessible approach that can identify proteins of biological interest. We have probed antigens presented by a monolayer of tumor cells for their ability to interact with a pool of aptamers. A glioblastoma-derived cell line, U251, was used as the target for systematic evolution of ligands by exponential enrichment by using a single-stranded DNA library. We isolated specifically interacting oligonucleotides, and biochemical strategies were used to identify the protein target for one of the aptamers. Here we characterize the interaction of the DNA aptamer, GBI-10, with tenascin-C, an extracellular protein found in the tumor matrix. Tenascin-C is believed to be involved in both embryogenesis and oncogenesis pathways. Systematic evolution of ligands by exponential enrichment appears to be a successful strategy for the a priori identification of targets of biological interest within complex systems.


Subject(s)
Tenascin/chemistry , Amino Acid Sequence , Base Sequence , Biological Evolution , Chromatography, Liquid , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Enzyme-Linked Immunosorbent Assay , Glioblastoma , Humans , Ligands , Mass Spectrometry , Membrane Proteins/isolation & purification , Molecular Sequence Data , Oligodeoxyribonucleotides , Peptide Fragments/chemistry , Templates, Genetic , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...