Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
N Engl J Med ; 390(20): 1873-1884, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38810185

ABSTRACT

BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood. METHODS: We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses. RESULTS: Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients. CONCLUSIONS: Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
AIRE Protein , Interferon-gamma , Janus Kinase Inhibitors , Polyendocrinopathies, Autoimmune , Adult , Animals , Female , Humans , Male , Mice , AIRE Protein/deficiency , AIRE Protein/genetics , AIRE Protein/immunology , Autoantibodies/blood , Autoantibodies/immunology , Chemokine CXCL9/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Janus Kinase Inhibitors/therapeutic use , Mice, Knockout , Nitriles/therapeutic use , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/drug therapy , Polyendocrinopathies, Autoimmune/immunology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/therapeutic use , T-Lymphocytes/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Pilot Projects , Disease Models, Animal , Child , Adolescent , Middle Aged
2.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38260709

ABSTRACT

Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae , sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.

3.
PLoS Pathog ; 19(8): e1011579, 2023 08.
Article in English | MEDLINE | ID: mdl-37611070

ABSTRACT

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.


Subject(s)
Candida albicans , Candidiasis, Oral , Animals , Mice , Cell Membrane , ErbB Receptors , Cadherins , Epithelial Cells
4.
bioRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865306

ABSTRACT

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans . Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 were required for C. albicans stimulation of c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorated OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans . Highlights: c-Met is an oral epithelial cell receptor for Candida albicans C. albicans infection causes c-Met and the epidermal growth factor receptor (EGFR) to form a complex with E-cadherin, which is required for c-Met and EGFR function C. albicans Hyr1 and Als3 interact with c-Met and EGFR, inducing oral epithelial cell endocytosis and virulence during oropharyngeal candidiasis Dual blockade of c-Met and EGFR ameliorates oropharyngeal candidiasis.

5.
Nat Commun ; 13(1): 5545, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138043

ABSTRACT

During infection the host relies on pattern-recognition receptors to sense invading fungal pathogens to launch immune defense mechanisms. While fungal recognition and immune effector responses are organ and cell type specific, during disseminated candidiasis myeloid cells exacerbate collateral tissue damage. The ß-glucan receptor ephrin type-A 2 receptor (EphA2) is required to initiate mucosal inflammatory responses during oral Candida infection. Here we report that EphA2 promotes renal immunopathology during disseminated candidiasis. EphA2 deficiency leads to reduced renal inflammation and injury. Comprehensive analyses reveal that EphA2 restrains IL-23 secretion from and migration of dendritic cells. IL-23 signaling prevents ferroptotic host cell death during infection to limit inflammation and immunopathology. Further, host cell ferroptosis limits antifungal effector functions via releasing the lipid peroxidation product 4-hydroxynonenal to induce various forms of cell death. Thus, we identify ferroptotic cell death as a critical pathway of Candida-mediated renal immunopathology that opens a new avenue to tackle Candida infection and inflammation.


Subject(s)
Candidiasis , Ferroptosis , Animals , Antifungal Agents , Candida albicans/physiology , Ephrins , Inflammation , Interleukin-23 , Mice , Mice, Inbred C57BL
6.
PLoS Pathog ; 18(7): e1010681, 2022 07.
Article in English | MEDLINE | ID: mdl-35797411

ABSTRACT

During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.


Subject(s)
Candidiasis , Endothelial Cells , Animals , Candida , Candida albicans , Candidiasis/microbiology , Endothelial Cells/microbiology , Humans , Mice , Vitronectin
7.
Mucosal Immunol ; 15(5): 829-836, 2022 05.
Article in English | MEDLINE | ID: mdl-35778599

ABSTRACT

The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.


Subject(s)
Candida albicans , Symbiosis , Candida albicans/physiology , Dysbiosis , Humans , Immune System , Monitoring, Immunologic
9.
PLoS Pathog ; 18(1): e1010192, 2022 01.
Article in English | MEDLINE | ID: mdl-34995333

ABSTRACT

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes ß-glucan in the fungal cell wall. C. albicans ß-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how ß-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates ß-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated ß-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated ß-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


Subject(s)
Candida albicans/pathogenicity , Candidiasis/immunology , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Virulence/physiology , beta-Glucans/immunology , Animals , Candida albicans/immunology , Candida albicans/metabolism , Candidiasis/metabolism , Female , Male , Mice , Mice, Inbred C57BL , beta-Glucans/metabolism
10.
mBio ; 12(6): e0271621, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34724825

ABSTRACT

During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1ß (IL-1ß) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1ß, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.


Subject(s)
Candida albicans/physiology , Candidiasis, Oral/metabolism , ErbB Receptors/metabolism , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Animals , Candidiasis, Oral/genetics , Candidiasis, Oral/microbiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , ErbB Receptors/genetics , Humans , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Protein Binding , Receptors, Complement/genetics , Signal Transduction
11.
Science ; 373(6561): eabi8835, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529475

ABSTRACT

Puel and Casanova and Kisand et al. challenge our conclusions that interferonopathy and not IL-17/IL-22 autoantibodies promote candidiasis in autoimmune polyendocrinopathy­candidiasis­ectodermal dystrophy. We acknowledge that conclusive evidence for causation is difficult to obtain in complex human diseases. However, our studies clearly document interferonopathy driving mucosal candidiasis with intact IL-17/IL-22 responses in Aire-deficient mice, with strong corroborative evidence in patients.


Subject(s)
Immunity, Mucosal , Mycoses , Humans , Mucous Membrane , Animals , Mice
12.
Nat Commun ; 12(1): 3899, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162849

ABSTRACT

The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


Subject(s)
Candida albicans/metabolism , Candidiasis/metabolism , Fungal Proteins/metabolism , Hyphae/metabolism , Animals , Candida albicans/genetics , Candida albicans/pathogenicity , Candidiasis/microbiology , Cell Division/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Humans , Hyphae/genetics , Hyphae/growth & development , Macrophages/metabolism , Mice, Inbred BALB C , Mutation , Neutrophils/metabolism , Virulence/genetics
13.
PLoS Pathog ; 17(1): e1009221, 2021 01.
Article in English | MEDLINE | ID: mdl-33471869

ABSTRACT

During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects ß-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.


Subject(s)
Candida albicans/physiology , Candidiasis, Oral/pathology , Ephrin-A2/metabolism , Epithelial Cells/pathology , Oropharynx/pathology , Virulence Factors/metabolism , Animals , Candidiasis, Oral/genetics , Candidiasis, Oral/metabolism , Candidiasis, Oral/microbiology , Cytokines/metabolism , Disease Models, Animal , Ephrin-A2/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oropharynx/metabolism , Oropharynx/microbiology , Receptor, EphA2 , Virulence Factors/genetics
14.
Science ; 371(6526)2021 01 15.
Article in English | MEDLINE | ID: mdl-33446526

ABSTRACT

Human monogenic disorders have revealed the critical contribution of type 17 responses in mucosal fungal surveillance. We unexpectedly found that in certain settings, enhanced type 1 immunity rather than defective type 17 responses can promote mucosal fungal infection susceptibility. Notably, in mice and humans with AIRE deficiency, an autoimmune disease characterized by selective susceptibility to mucosal but not systemic fungal infection, mucosal type 17 responses are intact while type 1 responses are exacerbated. These responses promote aberrant interferon-γ (IFN-γ)- and signal transducer and activator of transcription 1 (STAT1)-dependent epithelial barrier defects as well as mucosal fungal infection susceptibility. Concordantly, genetic and pharmacologic inhibition of IFN-γ or Janus kinase (JAK)-STAT signaling ameliorates mucosal fungal disease. Thus, we identify aberrant T cell-dependent, type 1 mucosal inflammation as a critical tissue-specific pathogenic mechanism that promotes mucosal fungal infection susceptibility in mice and humans.


Subject(s)
Candida albicans/immunology , Candidiasis, Chronic Mucocutaneous/genetics , Candidiasis, Chronic Mucocutaneous/immunology , Immunity, Mucosal/immunology , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , Adolescent , Adult , Aged , Animals , Disease Models, Animal , Female , Humans , Immunity, Mucosal/genetics , Immunologic Surveillance/genetics , Immunologic Surveillance/immunology , Interferon-gamma/genetics , Interleukins/genetics , Janus Kinases/genetics , Male , Mice , Mice, Inbred BALB C , Middle Aged , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Receptors, Interleukin-17/genetics , STAT1 Transcription Factor/genetics , T-Lymphocytes/immunology , Young Adult , Interleukin-22
15.
Nat Microbiol ; 6(3): 313-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33462434

ABSTRACT

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.


Subject(s)
Mucorales/pathogenicity , Mucormycosis/pathology , Mycotoxins/metabolism , Ricin/metabolism , Animals , Antitoxins/immunology , Antitoxins/pharmacology , Antitoxins/therapeutic use , Apoptosis , Capillary Permeability , Cells, Cultured , Cross Reactions , Humans , Hyphae/chemistry , Hyphae/pathogenicity , Lectins/metabolism , Mice , Mucorales/chemistry , Mucorales/classification , Mucorales/genetics , Mucormycosis/microbiology , Mucormycosis/prevention & control , Mycotoxins/chemistry , Mycotoxins/genetics , Mycotoxins/immunology , Necrosis , RNA Interference , Rhizopus/chemistry , Rhizopus/genetics , Rhizopus/pathogenicity , Ribosome Inactivating Proteins/metabolism , Ricin/chemistry , Ricin/immunology , Virulence/drug effects , Virulence/genetics
16.
Front Immunol ; 11: 555363, 2020.
Article in English | MEDLINE | ID: mdl-33193324

ABSTRACT

The fungus Candida albicans colonizes the oral mucosal surface of 30-70% of healthy individuals. Due to local or systemic immunosuppression, this commensal fungus is able to proliferate resulting in oral disease, called oropharyngeal candidiasis (OPC). However, in healthy individuals C. albicans causes no harm. Unlike humans mice do not host C. albicans in their mycobiome. Thus, oral fungal challenge generates an acute immune response in a naive host. Therefore, we utilized C. albicans clinical isolates which are able to persist in the oral cavity without causing disease to analyze adaptive responses to oral fungal commensalism. We performed RNA sequencing to determine the transcriptional host response landscape during C. albicans colonization. Pathway analysis revealed an upregulation of adaptive host responses due to C. albicans oral persistence, including the upregulation of the immune network for IgA production. Fungal colonization increased cross-specific IgA levels in the saliva and the tongue, and IgA+ cells migrated to foci of fungal colonization. Binding of IgA prevented fungal epithelial adhesion and invasion resulting in a dampened proinflammatory epithelial response. Besides CD19+ CD138- B cells, plasmablasts, and plasma cells were enriched in the tongue of mice colonized with C. albicans suggesting a potential role of B lymphocytes during oral fungal colonization. B cell deficiency increased the oral fungal load without causing severe OPC. Thus, in the oral cavity B lymphocytes contribute to control commensal C. albicans carriage by secreting IgA at foci of colonization thereby preventing fungal dysbiosis.


Subject(s)
Candida albicans/immunology , Candidiasis, Oral/immunology , Candidiasis, Oral/microbiology , Dysbiosis/immunology , Immunity, Mucosal , Immunoglobulin A, Secretory/immunology , Adaptive Immunity , Animals , Antibodies, Fungal/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions/immunology , Immunomodulation , Inflammation Mediators , Male , Mice , Mice, Transgenic , Mouth Mucosa/immunology , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology
17.
Sci Rep ; 10(1): 17178, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057074

ABSTRACT

Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.


Subject(s)
Interleukins/immunology , Interleukins/metabolism , Macrophages/immunology , Macrophages/metabolism , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , Adult , Aged , Cell Line , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , HEK293 Cells , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , RNA, Messenger/immunology , RNA, Messenger/metabolism , THP-1 Cells/immunology , THP-1 Cells/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
18.
mBio ; 11(3)2020 06 02.
Article in English | MEDLINE | ID: mdl-32487760

ABSTRACT

Mucormycosis, caused by Rhizopus species, is a life-threatening fungal infection that occurs in patients immunocompromised by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy, hematologic malignancies, or severe trauma. Inhaled Rhizopus spores cause pulmonary infections in patients with hematologic malignancies, while patients with DKA are much more prone to rhinoorbital/cerebral mucormycosis. Here, we show that Rhizopus delemar interacts with glucose-regulated protein 78 (GRP78) on nasal epithelial cells via its spore coat protein CotH3 to invade and damage the nasal epithelial cells. Expression of the two proteins is significantly enhanced by high glucose, iron, and ketone body levels (hallmark features of DKA), potentially leading to frequently lethal rhinoorbital/cerebral mucormycosis. In contrast, R. delemar CotH7 recognizes integrin ß1 as a receptor on alveolar epithelial cells, causing the activation of epidermal growth factor receptor (EGFR) and leading to host cell invasion. Anti-integrin ß1 antibodies inhibit R. delemar invasion of alveolar epithelial cells and protect mice from pulmonary mucormycosis. Our results show that R. delemar interacts with different mammalian receptors depending on the host cell type. Susceptibility of patients with DKA primarily to rhinoorbital/cerebral disease can be explained by host factors typically present in DKA and known to upregulate CotH3 and nasal GRP78, thereby trapping the fungal cells within the rhinoorbital milieu, leading to subsequent invasion and damage. Our studies highlight that mucormycosis pathogenesis can potentially be overcome by the development of novel customized therapies targeting niche-specific host receptors or their respective fungal ligands.IMPORTANCE Mucormycosis caused by Rhizopus species is a fungal infection with often fatal prognosis. Inhalation of spores is the major route of entry, with nasal and alveolar epithelial cells among the first cells that encounter the fungi. In patients with hematologic malignancies or those undergoing cytotoxic chemotherapy, Rhizopus causes pulmonary infections. On the other hand, DKA patients predominantly suffer from rhinoorbital/cerebral mucormycosis. The reason for such disparity in disease types by the same fungus is not known. Here, we show that the unique susceptibility of DKA subjects to rhinoorbital/cerebral mucormycosis is likely due to specific interaction between nasal epithelial cell GRP78 and fungal CotH3, the expression of which increases in the presence of host factors present in DKA. In contrast, pulmonary mucormycosis is initiated via interaction of inhaled spores expressing CotH7 with integrin ß1 receptor, which activates EGFR to induce fungal invasion of host cells. These results introduce a plausible explanation for disparate disease manifestations in DKA versus those in hematologic malignancy patients and provide a foundation for development of therapeutic interventions against these lethal forms of mucormycosis.


Subject(s)
Epithelial Cells/microbiology , Heat-Shock Proteins/genetics , Host-Pathogen Interactions , Invasive Fungal Infections/microbiology , Mucormycosis/microbiology , Receptors, Vitronectin/genetics , Rhizopus/pathogenicity , A549 Cells , Alveolar Epithelial Cells/microbiology , Alveolar Epithelial Cells/pathology , Animals , Cell Line , Diabetic Ketoacidosis/complications , Diabetic Ketoacidosis/microbiology , Endoplasmic Reticulum Chaperone BiP , Epithelial Cells/pathology , ErbB Receptors/genetics , Female , Humans , Male , Mice , Mice, Inbred ICR , Nose/cytology , Virulence
19.
J Infect Dis ; 220(9): 1477-1488, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31401652

ABSTRACT

BACKGROUND: Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. METHODS: In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. RESULTS: Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. CONCLUSIONS: The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections.


Subject(s)
Candida albicans/immunology , Candida albicans/metabolism , Candidiasis, Invasive/microbiology , Candidiasis, Invasive/pathology , Fungal Proteins/metabolism , Neutrophil Infiltration , Virulence Factors/metabolism , Animals , Candida albicans/growth & development , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Female , Male , Mice, Inbred BALB C , Signal Transduction , Survival Analysis , Virulence , Zebrafish
20.
Cell Rep ; 28(2): 423-433.e5, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31291578

ABSTRACT

During oropharyngeal candidiasis (OPC), Candida albicans proliferates and invades the superficial oral epithelium. Ephrin type-A receptor 2 (EphA2) functions as an oral epithelial cell ß-glucan receptor that triggers the production of proinflammatory mediators in response to fungal infection. Because EphA2 is also expressed by neutrophils, we investigated its role in neutrophil candidacidal activity during OPC. We found that EphA2 on stromal cells is required for the accumulation of phagocytes in the oral mucosa of mice with OPC. EphA2 on neutrophils is also central to host defense against OPC. The interaction of neutrophil EphA2 with serum-opsonized C. albicans yeast activates the MEK-ERK signaling pathway, leading to NADPH subunit p47phox site-specific phospho-priming. This priming increases intracellular reactive oxygen species production and enhances fungal killing. Thus, in neutrophils, EphA2 serves as a receptor for ß-glucans that augments Fcγ receptor-mediated antifungal activity and controls early fungal proliferation during OPC.


Subject(s)
Antifungal Agents/metabolism , Candida albicans/pathogenicity , Mouth Mucosa/pathology , Mycoses/genetics , Neutrophils/metabolism , Receptor, EphA2/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...