Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Comp Immunol ; 151: 105106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013114

ABSTRACT

Species-specific neural inflammation can be induced by profound immune signalling from periphery to brain. Recent advances in transcriptomics offer cost-effective approaches to study this regulation. In a population of captive zebra finch (Taeniopygia guttata), we compare the differential gene expression patterns in lipopolysaccharide (LPS)-triggered peripheral inflammation revealed by RNA-seq and QuantSeq. The RNA-seq approach identified more differentially expressed genes but failed to detect any inflammatory markers. In contrast, QuantSeq results identified specific expression changes in the genes regulating inflammation. Next, we adopted QuantSeq to relate peripheral and brain transcriptomes. We identified subtle changes in the brain gene expression during the peripheral inflammation (e.g. up-regulation in AVD-like and ACOD1 expression) and detected co-structure between the peripheral and brain inflammation. Our results suggest benefits of the 3'end transcriptomics for association studies between peripheral and neural inflammation in genetically heterogeneous models and identify potential targets for the future brain research in birds.


Subject(s)
Finches , Songbirds , Animals , Songbirds/genetics , Transcriptome , RNA, Messenger/metabolism , Gene Expression Profiling , Brain/metabolism , Inflammation/genetics , Inflammation/metabolism , Finches/genetics
2.
Proc Biol Sci ; 289(1988): 20221941, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36475439

ABSTRACT

In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.


Subject(s)
Parrots , Animals , Parrots/genetics , Receptors, Cannabinoid
3.
Exp Gerontol ; 154: 111527, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34428476

ABSTRACT

The first-line effector mechanisms of immune defence, including inflammation and oxidative burst, contribute significantly to host-pathogen resistance. Whether these immune responses undergo age-related changes in birds remains unknown. Here, we tracked selected inflammatory parameters in 54 free-living great tits (Parus major) of known age, captured repeatedly over three consecutive years, with the aims to investigate long-term repeatability and age-dependent changes in cellular oxidative burst responsiveness upon in vitro stimulation with bacterial lipopolysaccharide (LPS), and to identify its relationships with leukotriene B4 (LTB4) levels and haematological traits. In addition, we linked these immunological traits to selected physiological markers (antioxidants and oxidative stress markers). LTB4 levels increased with age and we have shown a similar non-significant tendency also for absolute granulocyte counts, indicating propagating chronic inflammation over the bird's lifetime, consistent with the inflammaging hypothesis. In contrast, cellular oxidative burst followed a quadratic trend of dependency on age with a peak in midlife individuals, in line with the immunosenescence hypothesis. Interestingly, LTB4 levels were positively associated with general oxidative damage, but negatively with antioxidant glutathione peroxidase activity, indicating links to redox balance. This longitudinal study demonstrates the contrasting patterns of age-related changes in background and acute markers of pro-inflammatory immunity contributing to immunosenescence in birds and thus provides basis for interpretation of the tested inflammatory markers in cross-cohort datasets.


Subject(s)
Immunosenescence , Aging , Humans , Inflammation , Longitudinal Studies , Oxidative Stress
4.
Sci Rep ; 8(1): 17878, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552359

ABSTRACT

Immune genes show remarkable levels of adaptive variation shaped by pathogen-mediated selection. Compared to humans, however, population polymorphism in animals has been understudied. To provide an insight into immunogenetic diversity in birds, we sequenced complete protein-coding regions of all Toll-like receptor (TLR) genes with direct orthology between mammals and birds (TLR3, TLR4, TLR5 and TLR7) in 110 domestic chickens from 25 breeds and compared their variability with a corresponding human dataset. Chicken TLRs (chTLRs) exhibit on average nine-times higher nucleotide diversity than human TLRs (hTLRs). Increased potentially functional non-synonymous variability is found in chTLR ligand-binding ectodomains. While we identified seven sites in chTLRs under positive selection and found evidence for convergence between alleles, no selection or convergence was detected in hTLRs. Up to six-times more alleles were identified in fowl (70 chTLR4 alleles vs. 11 hTLR4 alleles). In chTLRs, high numbers of alleles are shared between the breeds and the allelic frequencies are more equal than in hTLRs. These differences may have an important impact on infectious disease resistance and host-parasite co-evolution. Though adaptation through high genetic variation is typical for acquired immunity (e.g. MHC), our results show striking levels of intraspecific polymorphism also in poultry innate immune receptors.


Subject(s)
Chickens , Genetic Variation , Toll-Like Receptors/genetics , Animals , Gene Frequency , Humans , Sequence Analysis, DNA
5.
J Agric Food Chem ; 66(44): 11854-11863, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30296079

ABSTRACT

Avian egg white is essential for protecting and nourishing bird embryos during their development. Being produced in the female magnum, variability in hen oviduct gene expression may affect egg white composition in domestic chickens. Since traditional poultry breeds may represent a source of variation, in the present study we describe the egg white proteome (mass spectrometry) and corresponding magnum transcriptome (high-throughput sequencing) for 20 hens from five domestic fowl breeds (large breeds: Araucana, Czech golden pencilled, Minorca; and small breeds: Booted bantam, Rosecomb bantam). In total, we identified 189 egg white proteins and 16391 magnum-expressed genes. The majority of egg white protein content comprised proteins with an antimicrobial function. Despite general similarity, Between-class Principal Component Analysis revealed significant breed-specific variability in protein abundances, differentiating especially small and large breeds. Though we found strong association between magnum mRNA expression and egg white protein abundance across genes, coinertia analysis revealed no transcriptome/proteome costructure at the individual level. Our study is the first to show variation in protein abundances in egg white across chicken breeds with potential effects on egg quality, biosafety, and chick development. The observed interindividual variation probably results from post-transcriptional regulation creating a discrepancy between proteomic and transcriptomic data.


Subject(s)
Chickens/genetics , Egg Proteins/genetics , Animals , Animals, Domestic/classification , Animals, Domestic/genetics , Animals, Domestic/metabolism , Chickens/classification , Chickens/metabolism , Egg Proteins/chemistry , Egg Proteins/metabolism , Female , Gene Expression Profiling , Proteome/chemistry , Proteome/genetics , Proteome/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...