Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14882, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050419

ABSTRACT

Acrylamide (ACR) is a toxic compound commonly found in fried, baked and heat-processed starchy foods. The current study investigated the time-dependent effects of maternal exposure to non-toxic ACR doses on the oxidative stress, liver function, and basal blood morphology of the rat offspring. Pregnant, Wistar rats were randomly divided into the control group or the groups administrated with ACR (3 mg/kg b.w./day): long exposure for 15 days, medium exposure for 10 days and short exposure for 5 days during pregnancy. Body mass, blood morphology and hematology, serum concentrations of growth hormone, IGF-1, TNF-α, IL-1ß, IL-6 and insulin, liver histomorphometry, liver activity of beclin1, LC2B and caspase3, markers of oxidative stress and the activity of antioxidative enzymes in blood serum and the liver were measured in offspring at weaning (postnatal day 21). Even short prenatal exposure to ACR led to oxidative stress and resulted in changes in liver histomorphometry and upregulation of autophagy/apoptosis. However, the most significant changes were observed following the long period of ACR exposure. This study has shown for the first time that ACR is responsible for changes in body mass in a time-dependent manner, which could lead to more serious illnesses like overweight and diabetes later in life.


Subject(s)
Acrylamide , Oxidative Stress , Acrylamide/toxicity , Animals , Female , Liver , Pregnancy , Rats , Rats, Wistar , Weaning
2.
Animal ; 13(12): 2773-2781, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31113501

ABSTRACT

Gut microbiota have been shown to play a critical role in the maintenance of host health. Probiotics, which regulate gut microbiota balance, could serve as an effective alternative to antibiotic growth promoters. Since changes in the gastrointestinal tract, caused by a variety of different strains, groups and amounts of microorganisms, may be reflected in its histological structure, the aim of the present study was to examine the effects of rising doses of a mixed probiotic preparation on the structure and development of the small intestine of female turkeys. Eighty, three-day-old, healthy, female turkeys (Big-6 breed) were used in the current (16-week) study. The turkeys were randomly allocated to four weight-matched (59.70 ± 0.83 g) groups (n = 20), according to probiotic treatment dose (0, 107 cfu•g-1, 108 cfu•g-1 or 109 cfu•g-1, in 500 g•1000 kg-1) (cfu - a colony-forming unit). Three, non-genetically modified strains of probiotic cultures obtained from poultry, four bacterial and one yeast culture, were used. Histomorphometric analysis of the structure of the small intestinal wall of the duodenum and jejunum was performed. All probiotic doses used in the current study exerted a beneficial effect on the histological structure of the small intestine; however, the observed effect was dose and region dependent. Significant increases in villi height, crypt depth, villi and crypt width, mucosa thickness, epithelial height, enterocyte number, absorption surface and intestinal ganglia geometric indices were observed, specifically in the duodenum of birds receiving an intermediate dose of probiotic (108 cfu•g-1). The probiotic doses used in the current study differed significantly in their effect on the small intestine (P < 0.01), with the intermediate dose (108 cfu•g-1) significantly improving 58% of the parameters assessed, compared to the control. The duodenum was more susceptible to the favourable effects of the probiotic than the jejunum (56% v. 31% improvement in the parameters assessed) (P < 0.01). The weakest favourable effect was observed in the group that received the highest dose of probiotic.


Subject(s)
Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Probiotics/administration & dosage , Turkeys/anatomy & histology , Animal Feed/analysis , Animals , Body Weight , Diet/veterinary , Enterocytes/drug effects , Female , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Intestine, Small/anatomy & histology , Intestine, Small/drug effects , Random Allocation
3.
J Anim Physiol Anim Nutr (Berl) ; 102(1): e299-e308, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28503899

ABSTRACT

The aim of the study was to evaluate the effect of the diet, mother type and sex of the offspring on the mechanical and geometric parameters of long bones as well as bone tissue density in minks. Primiparous and multiparous dams were supplemented with ß-hydroxy ß-methylbutyrate (a metabolite of leucine, at the daily dosage of 0.02 g/kg of body weight) and/or 2-oxoglutaric acid (a precursor of glutamine, at the daily dosage of 0.4 g/kg of body weight) during gestation. The diet did not influence bone tissue density and the length of the humerus. An increase in the length of the femur was noted in male offspring delivered by multiparous dams. The diet resulted in an increase in the weight of the humerus in males from multiparous dams and a decrease in offspring from primiparous dams. Heavier femora were noted in male offspring delivered by both types of dams. The maximum elastic strength of the humerus was higher in the offspring delivered by multiparous than primiparous dams, irrespective of the offspring sex. The diet resulted in reduction in the ultimate strength of the femur in the male offspring delivered by primiparous dams. Only females born by multiparous dams, irrespective of the diet, showed a significant increase in the cross-sectional area of the humerus, while a significant decline was noted in males delivered by multiparous dams and in all the offspring delivered by primiparous dams. An increase in the cross-sectional area of the femur was noted in the offspring delivered by multiparous dams, while reduction was observed in the offspring delivered by primiparous dams. These results have shown for the first time that the presence of ß-hydroxy-ß-methylbutyrate or 2-oxoglutaric acid in the diet of pregnant primiparous or multiparous dams unambiguously affects the geometry and mechanical properties of offspring's long bones.


Subject(s)
Bone Density/drug effects , Bone Development/drug effects , Ketoglutaric Acids/pharmacology , Mink/growth & development , Valerates/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Weight/drug effects , Diet/veterinary , Female , Male , Parity , Pregnancy , Prenatal Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...