Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Infect Dis ; 141S: 106991, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447755

ABSTRACT

Tuberculosis (TB), an aerosol-transmitted infection caused by Mycobacterium tuberculosis (Mtb), remains the commonest cause of death globally, from an infectious bacterial disease. Nine years on from the launch of the World Health Organization (WHO)'s END-TB strategy, disease incidence rates are stubbornly unchanged [1]. While this represents, in part, a reversal of improving trends caused by the COVID-19 pandemic, it also reflects the fragility and inadequacy of healthcare systems to sustain TB control [2]. Although multifactorial, a key reason for this is the ineffectiveness of existing clinical tools to meet the two key objectives of the END-TB strategy-(i) early diagnosis and treatment of TB disease (to limit onward transmission); and (ii) disease prevention through screening for asymptomatic TB infection (TBI). Meeting both objectives will rely on the development of new biomarkers with high accuracy, but the global nature of the TB problem also requires that new tests are rapid, low cost and can be measured in patients by sampling from universally accessible sites. In this review, we will present the accumulating evidence for circulating Mtb in both TB disease and asymptomatic TBI and discuss the potential utility of novel bacteriophage-based technology for blood-based detection of Mtb.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Pandemics , Tuberculosis/microbiology
2.
Lancet Microbe ; 5(2): e119-e130, 2024 02.
Article in English | MEDLINE | ID: mdl-38244554

ABSTRACT

BACKGROUND: Incipient tuberculosis, a progressive state of Mycobacterium tuberculosis infection with an increased risk of developing into tuberculosis disease, remains poorly characterised. Animal models suggest an association of progressive infection with bacteraemia. Circulating M tuberculosis DNA has previously been detected in pulmonary tuberculosis by use of Actiphage, a bacteriophage-based real-time PCR assay. We aimed to investigate whether serial [18F]fluorodeoxyglucose ([18F]FDG)-PET-CT could be used to characterise the state and progressive trajectory of incipient tuberculosis, and examine whether these PET-CT findings are associated with Actiphage-based detection of circulating M tuberculosis DNA. METHODS: We did a prospective 12-month cohort study in healthy, asymptomatic adults (aged ≥16 years) who were household contacts of patients with pulmonary tuberculosis, and who had a clinical phenotype of latent tuberculosis infection, in Leicester, UK. Actiphage testing of participants' blood samples was done at baseline, and [18F]FDG PET-CT at baseline and after 3 months. Baseline PET-CT features were classified as positive, indeterminate, or negative, on the basis of the quantitation (maximum standardised uptake value [SUVmax]) and distribution of [18F]FDG uptake. Microbiological sampling was done at amenable sites of [18F]FDG uptake. Changes in [18F]FDG uptake after 3 months were quantitatively categorised as progressive, stable, or resolving. Participants received treatment if features of incipient tuberculosis, defined as microbiological detection of M tuberculosis or progressive PET-CT change, were identified. FINDINGS: 20 contacts were recruited between Aug 5 and Nov 5, 2020; 16 of these participants had a positive result on IFNγ release assay (QuantiFERON-TB Gold Plus [QFT]) indicating tuberculosis infection. Baseline PET-CT scans were positive in ten contacts (all QFT positive), indeterminate in six contacts (three QFT positive), and negative in four contacts (three QFT positive). Four of eight PET-CT-positive contacts sampled had M tuberculosis identified (three through culture, one through Xpert MTB/RIF Ultra test) from intrathoracic lymph nodes or bronchial wash and received full antituberculosis treatment. Two further unsampled PET-CT-positive contacts were also treated: one with [18F]FDG uptake in the lung (SUVmax 9·4) received empirical antituberculosis treatment and one who showed progressive [18F]FDG uptake received preventive treatment. The ten untreated contacts with [18F]FDG uptake at baseline (seven QFT positive) had stable or resolving changes at follow-up and remained free of tuberculosis disease after 12 months. A positive baseline Actiphage test was associated with the presence of features of incipient tuberculosis requiring treatment (p=0·018). INTERPRETATION: Microbiological and inflammatory features of incipient tuberculosis can be visualised on PET-CT and are associated with M tuberculosis detection in the blood, supporting the development of pathogen-directed blood biomarkers of tuberculosis risk. FUNDING: MRC Confidence in Concept.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Adult , Humans , Latent Tuberculosis/diagnostic imaging , Positron Emission Tomography Computed Tomography , Mycobacterium tuberculosis/genetics , Prospective Studies , Cohort Studies , Fluorodeoxyglucose F18 , Tuberculosis/diagnostic imaging , Tuberculosis, Pulmonary/diagnostic imaging , United Kingdom/epidemiology , Antitubercular Agents
3.
Sci Total Environ ; 869: 161684, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36690105

ABSTRACT

Understanding the links between environmental and wildlife elemental concentrations is key to help assess ecosystem functions and the potential effects of legacy pollutants. In this study, livers from 448 European badgers (Meles meles) collected across the English Midlands were used to investigate the relationship between elemental concentrations in topsoils and wildlife. Mean soil sample concentrations within 2 km of each badger, determined using data from the British Geological Survey's 'Geochemical Baseline Survey of the Environment', were compared to badger liver elemental concentrations, focusing primarily on Ag, As, Cd, Cr, Cu, K, Mn, Pb, Se, Zn. Generally, the badgers appeared to have elemental concentrations comparable with those published for other related animals, though Cu concentrations tended to be lower than expected. While there was no relationship between soil and badger liver concentrations for most biologically essential elements, biologically non-essential elements, specifically Pb, Cd, As, and Ag, were positively correlated between soil and badger livers. Lead and Cd, the elements with the strongest relationships between soils and badger livers, were primarily elevated in badgers collected in Derbyshire, a county with a millennia-long history of Pb mining and significant Pb and Cd soil pollution. Cadmium concentrations in badgers were also, on average, almost nine times higher than the local soil concentrations, likely due to Cd biomagnification in earthworms, a dietary staple of badgers. While badgers are good models for studying associations between soil and wildlife elemental concentrations, due to their diet, burrowing behaviours, and site fidelity, all flora and fauna local to human-modified environments could be exposed to and impacted by legacy pollutants.


Subject(s)
Environmental Pollutants , Metals, Heavy , Mustelidae , Soil Pollutants , Humans , Animals , Soil , Cadmium , Ecosystem , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Environmental Monitoring
4.
Microorganisms ; 9(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34835491

ABSTRACT

Mycobacterium tuberculosis and other non-tuberculous mycobacteria are responsible for a variety of different infections affecting millions of patients worldwide. Their diagnosis is often problematic and delayed until late in the course of disease, requiring a high index of suspicion and the combined efforts of clinical and laboratory colleagues. Molecular methods, such as PCR platforms, are available, but expensive, and with limited sensitivity in the case of paucibacillary disease. Treatment of mycobacterial infections is also challenging, typically requiring months of multiple and combined antibiotics, with associated side effects and toxicities. The presence of innate and acquired drug resistance further complicates the picture, with dramatic cases without effective treatment options. Bacteriophages (viruses that infect bacteria) have been used for decades in Eastern Europe for the treatment of common bacterial infections, but there is limited clinical experience of their use in mycobacterial infections. More recently, bacteriophages' clinical utility has been re-visited and their use has been successfully demonstrated both as diagnostic and treatment options. This review will focus specifically on how mycobacteriophages have been used recently in the diagnosis and treatment of different mycobacterial infections, as potential emerging technologies, and as an alternative treatment option.

5.
Sci Rep ; 11(1): 20995, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697381

ABSTRACT

Bovine tuberculosis (bTB) is an important animal health and economic problem for the cattle industry and a potential zoonotic threat. Wild badgers (Meles meles) play a role on its epidemiology in some areas of high prevalence in cattle, particularly in the UK and Republic of Ireland and increasingly in parts of mainland Europe. However, little is known about the involvement of badgers in areas on the spatial edge of the cattle epidemic, where increasing prevalence in cattle is seen. Here we report the findings of a study of found-dead (mainly road-killed) badgers in six counties on the edge of the English epidemic of bTB in cattle. The overall prevalence of Mycobacterium tuberculosis complex (MTC) infection detected in the study area was 51/610 (8.3%, 95% CI 6.4-11%) with the county-level prevalence ranging from 15 to 4-5%. The MTC spoligotypes of recovered from badgers and cattle varied: in the northern part of the study area spoligotype SB0129 predominated in both cattle and badgers, but elsewhere there was a much wider range of spoligotypes found in badgers than in cattle, in which infection was mostly with the regional cattle spoligotype. The low prevalence of MTC in badgers in much of the study area, and, relative to in cattle, the lower density of sampling, make firm conclusions difficult to draw. However, with the exception of Cheshire (north-west of the study area), little evidence was found to link the expansion of the bTB epidemic in cattle in England to widespread badger infection.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/microbiology , Mustelidae/microbiology , Tuberculosis, Bovine/epidemiology , Tuberculosis/veterinary , Animals , Cattle , England/epidemiology , Geography, Medical , Incidence , Prevalence , Public Health Surveillance , Tuberculosis, Bovine/microbiology
6.
Front Vet Sci ; 8: 665697, 2021.
Article in English | MEDLINE | ID: mdl-34395569

ABSTRACT

Mycobacterium avium subsp paratuberculosis (MAP) is the causative agent of Johne's disease, which is an economically and clinically relevant pathogen for commercial deer production. The purpose of this study was to develop a method that could be used to rapidly detect MAP infection in deer using the Actiphage Rapid blood test. This test has previously been used to detect MAP in cattle blood following the purification of buffy coat using Ficoll gradients, however this method is quite laborious and costly. The purpose of this study was to develop a simpler method of blood preparation that was also compatible with deer blood and the Actiphage test. Initially differential lysis of RBCs using Ammonium Chloride-Potassium (ACK) blood lysis buffer was compared with the Ficoll gradient centrifugation method using cattle blood samples for compatibility with the Actiphage reagents, and it was found that the simpler ACK method did not have an impact on the Actiphage test reagents, producing an equivalent sensitivity for detection of low levels of MAP. When the two methods were compared using clinical blood samples from farmed deer, the ACK lysis method resulted in a cleaner sample. When a blinded test of 132 animals from 4 different production groups was carried out, the majority of the positive test results were found to be from animals in just one group, with a small number identified in a second group. The test results were found to be reproducible when a small set of positive animals were tested again 1 month after their initial testing. Finally a set of negative animals which had been previously screened using an ELISA test, all animals gave a negative Actiphage result. This study shows that this improved sample preparation method and Actiphage blood testing can be used to test blood samples from deer, and the full diagnostic potential of the method can now be evaluated.

7.
Front Microbiol ; 11: 904, 2020.
Article in English | MEDLINE | ID: mdl-32477308

ABSTRACT

This study has characterized the dominant non-starter Lactobacillus species isolated from different sites in a Stilton cheese to establish its diversity, stress-tolerance, anti-microbial activity and potential contribution to quality of cheese. Fifty-nine Lactobacillus isolates were cultured from the outer crust, blue veins and white core of the cheese and were speciated phenotypically and by 16S rDNA sequence analysis. Lactobacillus plantarum was the dominant species detected with only two isolates identified as Lactobacillus brevis. Strains were typed by pulse-field gel electrophoresis (PFGE) using the enzyme NotI to examine their genomic diversity. Cluster analysis of PFGE patterns produced five major clusters which associated isolates with their sites of isolation within the cheese. One L. plantarum isolate from each cheese site was selected and evaluated for salt, acid, relative humidity, and heat tolerance to determine whether stress conditions within the isolation site selected their phenotype. D 72°C values were 6, 13, and 17 s for strains from the crust, veins and core, respectively, suggesting strains on the crust may not have been able to survive pasteurization and therefore had been added post-pasteurization. All strains recovered from heat injury within 24-48 h at 4°C. pH values of 3, 3.5, and 4 suppressed growth but strains showed a varying ability to grow at pH 4.5 and 5; isolates from the core (which has the lowest pH) were the most acid-tolerant. All strains grew at 3.5 and 5% salt but were suppressed at 10%; those from the crust (which has a lower water activity) were the most halo-tolerant, growing at 8% salt whereas strains from the core were sensitive to this salt concentration. All 57 L. plantarum isolates were examined for antimicrobial activity and variable activity against Lactobacillus pentosus and other genera was demonstrated; plantaricin EF genes were present in 65% of strains. It was concluded that there are varied phenotypes and genotypes of Lactobacillus in a Stilton cheese according to site of isolation. Occurrence of different L. plantarum genotypes could contribute to variation in the cheese quality from batch to batch and provides criteria for selecting isolates as potential adjunct cultures.

8.
J Zoo Wildl Med ; 51(2): 426-432, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549574

ABSTRACT

Genetic diversity of captive wild animals can be enhanced by moving those individuals with valuable genes between collections and through introduction of a new pair from a range country. This requires movement of animals, which is inherent with disease risks, such as the introduction of pathogenic Mycobacterium sp. (MTBC) into a zoological collection. Decisions need to be made based on the outcome of perimovement disease screening using an array of tests, the majority of which are unvalidated in the species. A pair of endangered Asiatic lions (Panthera leo persica) imported from India to the United Kingdom were screened for MTBC using the comparative intradermal tuberculosis (TB) test, the feline interferon-γ blood test, and the experimental bacteriophage assay. Reactions on all three tests prompted screening of the three resident Asiatic lions using the same tests, all of which were negative for MTBC. Based on these test results, the decision had to be made to exclude the genetically valuable pair from the current collection. MTBC could not be identified using further tests, including culture and PCR on a bronchoalveolar lavage, on feces, or on postmortem tissues. This case series highlights the usefulness of a control group when interpreting unvalidated test results for detection of MTBC, the value of training big cats for conscious blood sampling, and the practical implications of placing the comparative intradermal TB test in the eyelids, when dealing with a species that requires a general anesthetic for most hands-on interventions.


Subject(s)
Interferon-gamma Release Tests/veterinary , Intradermal Tests/veterinary , Lions , Tuberculin Test/veterinary , Tuberculosis/veterinary , Animals , Animals, Zoo , England , Tuberculosis/diagnosis
9.
J Clin Pathol ; 73(5): 239-242, 2020 May.
Article in English | MEDLINE | ID: mdl-32198191

ABSTRACT

The severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) outbreak in Wuhan, China has now spread to many countries across the world including the UK with an increasing death toll. This will inevitably lead to an increase in the number of suspected coronavirus disease 2019 (COVID-19)-related deaths at autopsy. The Royal College of Pathologists has responded to this concern with the release of a briefing on autopsy practice relating to COVID-19. The following article is a summary and interpretation of these guidelines. It includes a description of hazard group 3 organisms, the category to which SARS-CoV-2 has been assigned, a brief description of what is currently known about the pathological and autopsy findings in COVID-19, a summary of the recommendations for conducting autopsies in suspected COVID-19 cases and the techniques for making the diagnosis at autopsy. It concludes by considering the clinicopathological correlation and notification of such cases.


Subject(s)
Autopsy , Betacoronavirus , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Humans , Pandemics , Pathologists , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Practice Guidelines as Topic , SARS-CoV-2
10.
Phage (New Rochelle) ; 1(4): 176-188, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-36147287

ABSTRACT

Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.

11.
Clin Infect Dis ; 70(5): 933-936, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31233122

ABSTRACT

The haematogenous dissemination of Mycobacterium tuberculosis (Mtb) is critical to the pathogenesis of progressive tuberculous infections in animal models. Using a novel, phage-based blood assay, we report the first concordant evidence in well-characterized, immunocompetent human cohorts, demonstrating associations of Mtb bacteremia with progressive phenotypes of latent infection and active pulmonary tuberculosis.


Subject(s)
Bacteremia , Bacteriophages , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Animals , Bacteremia/diagnosis , Humans , Tuberculosis, Pulmonary/diagnosis
12.
Microb Biotechnol ; 13(3): 738-746, 2020 05.
Article in English | MEDLINE | ID: mdl-31793754

ABSTRACT

Here, we describe the development of a method that exploits bacteriophage D29 as a lysis agent for efficient DNA extraction from low numbers of mycobacterial cells. This method (Actiphage® ) used in combination with PCR achieved rapid and sensitive (LOD ≤ 10 cell ml-1 ) detection and identification of viable, pathogenic mycobacteria in blood samples within 6 h. We demonstrate that mycobacteriophage D29 can be used to detect a range of mycobacteria from clinical blood samples including both Mycobacterium tuberculosis complex and Mycobacterium avium subsp. paratuberculosis without the need for culture and confirms our earlier observations that a low-level bacteraemia is associated with these infections in cattle. In a study of M. bovis-infected cattle (n = 41), the sensitivity of the Actiphage® method was 95 % (95 % CI; 0.84-0.99) and specificity was 100 % (95% CI; 0.92-1). We further used Actiphage® to demonstrate viable Mycobacterium avium subsp. paratuberculosis is present in the blood of Johne's infected cattle. This method provides a revolutionary new tool for the study of infections caused by these difficult to grow pathogens.


Subject(s)
Bacteriophages , Cattle Diseases , Molecular Diagnostic Techniques , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Tuberculosis, Bovine , Animals , Bacteriophages/metabolism , Cattle , Cattle Diseases/diagnosis , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/veterinary , Mycobacterium avium subsp. paratuberculosis/genetics , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , Polymerase Chain Reaction , Sensitivity and Specificity , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/microbiology
13.
Sci Total Environ ; 649: 12-20, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30170212

ABSTRACT

The isolation of antimicrobial resistant bacteria (ARB) from wildlife living adjacent to humans has led to the suggestion that such antimicrobial resistance (AMR) is anthropogenically driven by exposure to antimicrobials and ARB. However, ARB have also been detected in wildlife living in areas without interaction with humans. Here, we investigated patterns of resistance in Escherichia coli isolated from 408 wild bird and mammal faecal samples. AMR and multi-drug resistance (MDR) prevalence in wildlife samples differed significantly between a Sewage Treatment Plant (STP; wastes of antibiotic-treated humans) and a Farm site (antibiotic-treated livestock wastes) and Central site (no sources of wastes containing anthropogenic AMR or antimicrobials), but patterns of resistance also varied significantly over time and between mammals and birds. Over 30% of AMR isolates were resistant to colistin, a last-resort antibiotic, but resistance was not due to the mcr-1 gene. ESBL and AmpC activity were common in isolates from mammals. Wildlife were, therefore, harbouring resistance of clinical relevance. AMR E. coli, including MDR, were found in diverse wildlife species, and the patterns and prevalence of resistance were not consistently associated with site and therefore different exposure risks. We conclude that AMR in commensal bacteria of wildlife is not driven simply by anthropogenic factors, and, in practical terms, this may limit the utility of wildlife as sentinels of spatial variation in the transmission of environmental AMR.


Subject(s)
Birds/microbiology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Rodentia/microbiology , Amino Acid Sequence , Animals , Animals, Wild/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , England , Environment , Escherichia coli/physiology , Mutation
14.
Food Microbiol ; 74: 57-63, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29706338

ABSTRACT

A survey of retail purchased semi-skimmed pasteurised milk (n = 368) for Mycobacterium avium subspecies paratuberculosis (MAP) was conducted between May 2014 and June 2015 across the midlands of England using the Phage-PCR assay. Overall, 10.3% of the total samples collected contained viable MAP cells, confirming that pasteurisation is not capable of fully eliminating human exposure to viable MAP through milk. Comparison of the results gained using the Phage-PCR assay with the results of surveys using either culture or direct PCR suggest that the phage-PCR assay is able to detect lower numbers of cells, resulting in an increase in the number of MAP-positive samples detected. Comparison of viable count and levels of MAP detected in bulk milk samples suggest that MAP is not primarily introduced into the milk by faecal contamination but rather are shed directly into the milk within the udder. In addition results detected an asymmetric distribution of MAP exists in the milk matrix prior to somatic cell lysis, indicating that the bacterial cells in naturally contaminated milk are clustered together and may primarily be located within somatic cells. These latter two results lead to the hypothesis that intracellular MAP within the somatic cells may be protected against heat inactivation during pasteurisation, accounting for the presence of low levels of MAP detected in retail milk.


Subject(s)
Food Contamination/analysis , Food Microbiology , Milk/microbiology , Mycobacterium avium subsp. paratuberculosis/growth & development , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Animals , Bacterial Typing Techniques/methods , Bacteriophages/genetics , Cattle , Cattle Diseases/microbiology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Feces/microbiology , Female , Humans , Microbial Viability , Mycobacterium avium subsp. paratuberculosis/genetics , Mycobacterium avium subsp. paratuberculosis/virology , Paratuberculosis/microbiology , Pasteurization , Polymerase Chain Reaction/methods , United Kingdom
15.
J Microsc ; 266(3): 273-287, 2017 06.
Article in English | MEDLINE | ID: mdl-28252807

ABSTRACT

Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction.


Subject(s)
Achilles Tendon/ultrastructure , Collagen/ultrastructure , Imaging, Three-Dimensional/methods , Second Harmonic Generation Microscopy/methods , Animals , Microscopy, Atomic Force , Rabbits
16.
BMC Vet Res ; 12(1): 115, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27305900

ABSTRACT

BACKGROUND: Disseminated infection and bacteraemia is an underreported and under-researched aspect of Johne's disease. This is mainly due to the time it takes for Mycobacterium avium subsp. paratuberculosis (MAP) to grow and lack of sensitivity of culture. Viable MAP cells can be detected in the blood of cattle suffering from Johne's disease within 48 h using peptide-mediated magnetic separation (PMMS) followed by bacteriophage amplification. The aim of this study was to demonstrate the first detection of MAP in the blood of experimentally exposed cattle using the PMMS-bacteriophage assay and to compare these results with the immune response of the animal based on serum ELISA and shedding of MAP by faecal culture. RESULTS: Using the PMMS-phage assay, seven out of the 19 (37 %) MAP-exposed animals that were tested were positive for viable MAP cells although very low numbers of MAP were detected. Two of these animals were positive by faecal culture and one was positive by serum ELISA. There was no correlation between PMMS-phage assay results and the faecal and serum ELISA results. None of the control animals (10) were positive for MAP using any of the four detection methods. Investigations carried out into the efficiency of the assay; found that the PMMS step was the limiting factor reducing the sensitivity of the phage assay. A modified method using the phage assay directly on isolated peripheral blood mononuclear cells (without PMMS) was found to be superior to the PMMS isolation step. CONCLUSIONS: This proof of concept study has shown that viable MAP cells are present in the blood of MAP-exposed cattle prior to the onset of clinical signs. Although only one time point was tested, the ability to detect viable MAP in the blood of subclinically infected animals by the rapid phage-based method has the potential to increase the understanding of the pathogenesis of Johne's disease progression by warranting further research on the presence of MAP in blood.


Subject(s)
Bacteriological Techniques , Cattle Diseases/microbiology , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Paratuberculosis/microbiology , Animals , Bacteriological Techniques/methods , Bacteriological Techniques/veterinary , Bacteriophages , Cattle , Cattle Diseases/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Magnetics , Male , Paratuberculosis/blood
17.
Virulence ; 7(7): 779-88, 2016 10 02.
Article in English | MEDLINE | ID: mdl-27197018

ABSTRACT

Bovine tuberculosis is a zoonotic infectious disease caused by Mycobacterium bovis that affects cattle and can cause tuberculosis in a range of wildlife animals. A bacteriophage-based method combined with PCR (phage-PCR) has been recently used to detect and identify viable pathogenic mycobacteria in the peripheral blood mononuclear cells (PBMCs) of animals suffering from paratuberculosis. To adapt this method for the detection of M. bovis in blood, a new isothermal DNA amplification protocol using Recombinase Polymerase Amplification (RPA) was developed and was found to be able to detect M. bovis BCG within 48 h, with a limit of detection of approximately 10 cells per ml of blood for artificially inoculated blood samples. When blood samples (2 ml) from a Single Comparative Cervical Intradermal Tuberculin (SCCIT)- negative beef herd were tested, Mycobacterium tuberculosis complex (MTC) cells were not detected from any (45) of the blood samples. However when blood samples from SCCIT-positive animals were tested, viable MTC bacteria were detected in 66 % (27/41) of samples. Of these 41 animals sampled, 32 % (13) had visible lesions. In the visible lesion (VL) group, 85 % (11/13) had detectable levels of MTC whereas only 57 % (16/28) of animals which had no visible lesions (NVL) were found to have detectable mycobacteraemia. These results indicated that this simple, rapid method can be applied for the study of M. bovis infections. The frequency with which viable mycobacteria were detected in the peripheral blood of SCCIT-positive animals changes the paradigm of this disease.


Subject(s)
Bacteremia/veterinary , Cattle Diseases/diagnosis , Mycobacterium bovis/isolation & purification , Nucleic Acid Amplification Techniques/methods , Tuberculosis, Bovine/diagnosis , Animals , Bacteremia/diagnosis , Cattle , Cattle Diseases/microbiology , DNA, Bacterial/genetics , Limit of Detection , Mycobacteriophages , Mycobacterium bovis/genetics , Polymerase Chain Reaction , Recombinases/metabolism , Sensitivity and Specificity , Temperature , Tuberculin Test/veterinary , Tuberculosis, Bovine/microbiology
18.
Int J Food Microbiol ; 216: 91-4, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26421832

ABSTRACT

Surveys from different parts of the world have reported that viable Mycobacterium avium subsp. paratuberculosis (MAP) can be cultured from approximately 2% of samples of retail pasteurised milk samples. Pasteurised milk is used for the production of powdered infant formula (PIF) and therefore there is a concern that MAP may also be present in these products. Several studies have previously reported the detection of MAP in PIF using PCR-based assays. However, culture-based surveys of PIF have not detected viable MAP. Here we describe a phage amplification assay coupled with PCR (page-PCR) that can rapidly detect viable MAP in PIF. The results of a small survey showed that the phage-PCR assay detected viable MAP in 13% (4/32) of PIF samples. Culture detected viable MAP in 9% (3/32) PIF samples, all of which were also phage-PCR positive. Direct IS900 PCR detected MAP DNA in 22% (7/32) of PIF samples. The presence of viable MAP in PIF indicates that MAP either survived PIF manufacturing or that post-production contamination occurred. Irrespective of the route of MAP contamination, the presence of viable MAP in PIF is a potential public health concern.


Subject(s)
DNA, Bacterial/genetics , Infant Formula/microbiology , Milk/microbiology , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Animals , Bacteriophages/genetics , Humans , Infant , Infant, Newborn , Mycobacterium avium subsp. paratuberculosis/genetics , Polymerase Chain Reaction/methods
19.
Comput Methods Biomech Biomed Engin ; 18(9): 931-943, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24428581

ABSTRACT

A close relationship has been found between the 3D collagen structure and physiological condition of articular cartilage (AC). Studying the 3D collagen network in AC offers a way to determine the condition of the cartilage. However, traditional qualitative studies are time consuming and subjective. This study aims to develop a computer vision-based classifier to automatically determine the condition of AC tissue based on the structural characteristics of the collagen network. Texture analysis was applied to quantitatively characterise the 3D collagen structure in normal (International Cartilage Repair Society, ICRS, grade 0), aged (ICRS grade 1) and osteoarthritic cartilages (ICRS grade 2). Principle component techniques and linear discriminant analysis were then used to classify the microstructural characteristics of the 3D collagen meshwork and the condition of the AC. The 3D collagen meshwork in the three physiological condition groups displayed distinctive characteristics. Texture analysis indicated a significant difference in the mean texture parameters of the 3D collagen network between groups. The principle component and linear discriminant analysis of the texture data allowed for the development of a classifier for identifying the physiological status of the AC with an expected prediction error of 4.23%. An automatic image analysis classifier has been developed to predict the physiological condition of AC (from ICRS grade 0 to 2) based on texture data from the 3D collagen network in the tissue.

20.
PLoS One ; 9(9): e106690, 2014.
Article in English | MEDLINE | ID: mdl-25184428

ABSTRACT

Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non-pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay.


Subject(s)
Mycobacteriophages/growth & development , Mycobacteriophages/isolation & purification , Mycobacterium avium subsp. paratuberculosis/virology , RNA, Viral/biosynthesis , Host-Pathogen Interactions/genetics , Mycobacteriophages/genetics , Mycobacteriophages/pathogenicity , Mycobacterium avium subsp. paratuberculosis/genetics , Mycobacterium avium subsp. paratuberculosis/growth & development , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...