Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260434

ABSTRACT

Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. Here, we use 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detect transcription-dependent replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs). Large TDs are abundant in female-enriched, upper gastrointestinal tract and prostate cancers. They are associated with poor patient survival and mutations in TP53, CDK12, and SPOP. Upon inactivating CDK12, cells display significantly more TRCs, R-loops, and large TDs. Inhibition of G2/M checkpoint proteins, such as WEE1, CHK1, and ATR, selectively inhibits the growth of cells deficient in CDK12. Our data suggest that large TDs in cancer form due to TRCs, and their presence can be used as a biomarker for prognosis and treatment.

2.
Proc Natl Acad Sci U S A ; 120(52): e2313693120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38117852

ABSTRACT

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Immunity, Innate , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism
3.
Nat Commun ; 12(1): 4601, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326322

ABSTRACT

Genomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated pan-cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data reveals known prostate cancer specific driver genes, such as AR and HOXB13, as well as a number of top hits that are poorly characterized. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two top hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome.


Subject(s)
Cell Cycle Proteins/genetics , Kinesins/genetics , Nerve Tissue Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , CRISPR-Cas Systems , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , Cell Movement/physiology , Cells, Cultured , Databases, Genetic , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Kinesins/metabolism , Male , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplasm Staging , Nerve Tissue Proteins/metabolism , Prostatic Neoplasms/metabolism , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...