Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0293308, 2023.
Article in English | MEDLINE | ID: mdl-37967053

ABSTRACT

The fossil record for Cretaceous birds in Australia has been limited to rare skeletal material, feathers, and two tracks, a paucity shared with other Gondwanan landmasses. Hence the recent discovery of 27 avian footprints and other traces in the Early Cretaceous (Barremian-Aptian, 128-120 Ma) Wonthaggi Formation of Victoria, Australia amends their previous rarity there, while also confirming the earliest known presence of birds in Australia and the rest of Gondwana. The avian identity of these tracks is verified by their tridactyl forms, thin digits relative to track lengths, wide divarication angles, and sharp claws; three tracks also have hallux imprints. Track forms and sizes indicate a variety of birds as tracemakers, with some among the largest reported from the Early Cretaceous. Although continuous trackways are absent, close spacing and similar alignments of tracks on some bedding planes suggest gregariousness. The occurrence of this avian trace-fossil assemblage in circumpolar fluvial-floodplain facies further implies seasonal behavior, with trackmakers likely leaving their traces on floodplain surfaces during post-thaw summers.


Subject(s)
Birds , Animals , Beds , Fossils , Victoria
2.
J Mol Biol ; 385(3): 949-62, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19013466

ABSTRACT

Comparative analysis of the genome of the hyperthermophilic bacterium Thermotoga maritima revealed a hypothetical protein (EstA) with typical esterase features. The EstA protein was functionally produced in Escherichia coli and purified to homogeneity. It indeed displayed esterase activity with optima at or above 95 degrees C and at pH 8.5, with a preference for esters with short acyl chains (C2-C10). Its 2.6-A-resolution crystal structure revealed a classical alpha/beta hydrolase domain with a catalytic triad consisting of a serine, an aspartate, and a histidine. EstA is irreversibly inhibited by the organophosphate paraoxon. A 3.0-A-resolution structure confirmed that this inhibitor binds covalently to the catalytic serine residue of EstA. Remarkably, the structure also revealed the presence of an N-terminal immunoglobulin (Ig)-like domain, which is unprecedented among esterases. EstA forms a hexamer both in the crystal and in solution. Electron microscopy showed that the hexamer in solution is identical with the hexamer in the crystal, which is formed by two trimers, with the N-terminal domains facing each other. Mutational studies confirmed that residues Phe89, Phe112, Phe116, Phe246, and Trp377 affect enzyme activity. A truncated mutant of EstA, in which the Ig-like domain was removed, showed only 5% of wild-type activity, had lower thermostability, and failed to form hexamers. These data suggest that the Ig-like domain plays an important role in the enzyme multimerization and activity of EstA.


Subject(s)
Esterases/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability , Escherichia coli/genetics , Esterases/genetics , Esterases/metabolism , Kinetics , Mass Spectrometry , Models, Molecular , Protein Conformation , Protein Structure, Quaternary , Thermotoga maritima/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...