Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
medRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38883720

ABSTRACT

Background: Neuropsychiatric symptoms are common and disabling in Parkinson's disease (PD), with troublesome anxiety occurring in one-third of patients. Management of anxiety in PD is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements, and largely ineffective treatments.In this study, we assessed the intracranial neurophysiological correlates of anxiety in PD patients treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. Methods: We recorded local field potentials (LFP) from the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi) DBS implants in three PD cohorts: 1) patients with recordings (STN) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON or OFF dopaminergic medication; 2) patients with recordings (STN or GPi) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic Percept™ device), ON dopaminergic medication, with stimulation both ON or OFF; 3) patients with recordings performed at home while engaging in a behavioral task via STN and GPi leads and electrocorticography paddles (ECoG) over premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both ON or OFF.Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges were extracted from the LFP recordings, and their relation with anxiety ratings was assessed using linear mixed-effects models. Results: In total, 33 PD patients (59 hemispheres) were included. Across three independent cohorts, with stimulation OFF, basal ganglia theta power was positively related to trait anxiety (all p<0.05). Also in a naturalistic setting, with individuals at home at rest with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (p<0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. Conclusion: We showed that basal ganglia theta activity indexes trait anxiety in PD. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in PD, potentially suitable for guiding advanced DBS treatment tailored to the individual patient's needs, including non-motor symptoms.

2.
Curr Neuropharmacol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38847380

ABSTRACT

Extrapyramidal hyperkinetic movement disorders comprise a broad range of phenotypic phenomena, including chorea, dystonia, and tics. Treatment is generally challenging and individualized, given the overlapping phenomenology, limited evidence regarding efficacy, and concerns regarding the tolerability and safety of most treatments. Over the past decade, the treatment has become even more intricate due to advancements in the field of deep brain stimulation as well as optimized dopamine- depleting agents. Here, we review the current evidence for treatment modalities of extrapyramidal hyperkinetic movement disorders and provide a comprehensive and practical overview to aid the choice of therapy. Mechanism of action and practical intricacies of each treatment modality are discussed, focusing on dosing and adverse effect management. Finally, future therapeutic developments are also discussed.

3.
J Neurol ; 271(7): 3764-3776, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38809271

ABSTRACT

BACKGROUND: Autonomic dysfunction is common and disabling in Parkinson's disease (PD). The effects of deep brain stimulation (DBS) on the cardiovascular system in PD remain poorly understood. We aimed to assess the effect of DBS on cardiovascular symptoms and objective measures in PD patients. METHODS: We conducted a systematic literature search in PubMed/MEDLINE. RESULTS: 36 out of 472 studies were included, mostly involving DBS of the subthalamic nucleus, and to a lesser extent the globus pallidus pars interna and pedunculopontine nucleus. Seventeen studies evaluated the effect of DBS on patient-reported or clinician-rated cardiovascular symptoms, showing an improvement in the first year after surgery but not with longer-term follow-up. DBS has no clear direct effects on blood pressure during an orthostatic challenge (n = 10 studies). DBS has inconsistent effects on heart rate variability (n = 10 studies). CONCLUSION: Current evidence on the impact of DBS on cardiovascular functions in PD is inconclusive. DBS may offer short-term improvement of cardiovascular symptoms in PD, particularly orthostatic hypotension, which may be attributed to dopaminergic medication reduction after surgery. There is insufficient evidence to draw conclusions on the direct effect of DBS on blood pressure and heart rate variability.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/complications , Blood Pressure/physiology , Cardiovascular Diseases/therapy , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology
4.
Mov Disord ; 39(5): 910-915, 2024 May.
Article in English | MEDLINE | ID: mdl-38429947

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is efficacious for treating motor symptoms in Parkinson's disease (PD). OBJECTIVES: The aim is to evaluate the evidence regarding DBS effectiveness after postoperative cognitive deterioration, the impact of preoperative cognition on DBS effectiveness, and the impact of DBS on cognition. METHODS: Literature searches were performed on MEDLINE, EMBASE, and CENTRAL (Cochrane library). Primary outcomes were OFF-drug Unified Parkinson Disease Rating Scale Part III score and cognitive test scores. RESULTS: DBS effectiveness did not differ in patients with postoperative declining compared to stable cognition (n = 5 studies). Preoperative cognition did not influence DBS effectiveness (n = 1 study). DBS moderately decreased verbal fluency compared to the best medical treatment (n = 24 studies), which may be transient. CONCLUSION: DBS motor effectiveness in PD does not appear to be influenced by cognition. DBS in PD seems cognitively safe, except for a moderate decline in verbal fluency. Further research is warranted. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cognition , Deep Brain Stimulation , Parkinson Disease , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/complications , Humans , Cognition/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy
5.
Neuromodulation ; 27(3): 528-537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37452799

ABSTRACT

OBJECTIVES: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) has an ambiguous relation to speech. Speech impairment can be a stimulation-induced side effect, and parkinsonian dysarthria can improve with STN-DBS. Owing to the lack of an up-to-date and evidence-based approach, DBS reprogramming for speech impairment is largely blind and greatly relies on the physician's experience. In this study, we aimed to establish an evidence- and experience-based algorithm for managing speech impairment in patients with PD treated with STN-DBS. MATERIALS AND METHODS: We performed a single-center retrospective study to identify patients with STN-DBS and speech impairment. Onset of speech impairment, lead localization, and assessment of DBS-induced nature of speech impairment were collected. When DBS settings were adjusted for improving speech, the magnitude and duration of effect were collected. We also performed a systematic literature review to identify studies describing the effects of parameter adjustments aimed at improving speech impairment in patients with PD receiving STN-DBS. RESULTS: In the retrospective study, 245 of 631 patients (38.8%) with STN-DBS had significant speech impairment. The probability of sustained marked improvement upon reprogramming was generally low (27.9%). In the systematic review, 23 of 662 identified studies were included. Only two randomized controlled trials have been performed, providing evidence for interleaving-interlink stimulation only. Considerable methodologic heterogeneity precluded the conduction of a meta-analysis. CONCLUSIONS: Speech impairment in STN-DBS for PD is frequent, but high-quality evidence regarding DBS parameter adjustments is scarce, and the probability of sustained improvement is low. To improve this outcome, we propose an evidence- and experience-based approach to address speech impairment in STN-DBS that can be used in clinical practice.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Speech , Parkinson Disease/complications , Parkinson Disease/therapy , Subthalamic Nucleus/physiology , Retrospective Studies , Speech Disorders/etiology , Speech Disorders/therapy
8.
Acta Neuropathol ; 144(3): 465-488, 2022 09.
Article in English | MEDLINE | ID: mdl-35895140

ABSTRACT

A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Damage , DNA Repeat Expansion/genetics , Frontotemporal Dementia/pathology , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Pick Disease of the Brain/genetics , RNA/metabolism , RNA, Antisense , Zebrafish/genetics , Zebrafish/metabolism
9.
Mov Disord Clin Pract ; 9(4): 489-493, 2022 May.
Article in English | MEDLINE | ID: mdl-35582311

ABSTRACT

Background: The presence and prevalence of several neurological signs in patients with primary orthostatic tremor have not been systematically studied. Objectives: To assess the prevalence of clinical features of primary orthostatic tremor. Methods: Video-based assessment by four raters of standardized neurological examination of 11 patients with primary orthostatic tremor. Results: On standing, bent knees (7/11), hem sign (6/10), and a broad base of support (6/11) were the three most prevalent signs. Examination of gait revealed abnormal tandem gait (9/11) and bent knees (6/11) as the most prevalent clinical signs. In the arms, none of the patients displayed bradykinesia, ataxia, or dystonia. In the legs, ataxia was absent in all patients and bradykinesia was present in only one patient. Conclusions: Abnormal tandem gait, bent knees, hem sign, and broad base on standing are the most prevalent clinical signs in primary orthostatic tremor. We did not encounter clear extrapyramidal or unequivocal cerebellar signs.

12.
Neuroimage ; 254: 119147, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35346837

ABSTRACT

Subcortical structures are a relative neurophysiological 'terra incognita' owing to their location within the skull. While perioperative subcortical sensing has been performed for more than 20 years, the neurophysiology of the basal ganglia in the home setting has remained almost unexplored. However, with the recent advent of implantable pulse generators (IPG) that are able to record neural activity, the opportunity to chronically record local field potentials (LFPs) directly from electrodes implanted for deep brain stimulation opens up. This allows for a breakthrough of chronic subcortical sensing into fundamental research and clinical practice. In this review an extensive overview of the current state of subcortical sensing is provided. The widespread potential of chronic subcortical sensing for investigational and clinical use is discussed. Finally, status and future perspectives of the most promising application of chronic subcortical sensing -i.e., adaptive deep brain stimulation (aDBS)- are discussed in the context of movement disorders. The development of aDBS based on both chronic subcortical and cortical sensing has the potential to dramatically change clinical practice and the life of patients with movement disorders. However, several barriers still stand in the way of clinical implementation. Advancements regarding IPG and lead technology, physiomarkers, and aDBS algorithms as well as harnessing artificial intelligence, multimodality and sensing in the naturalistic setting are needed to bring aDBS to clinical practice.


Subject(s)
Deep Brain Stimulation , Movement Disorders , Algorithms , Artificial Intelligence , Basal Ganglia , Humans
14.
Ned Tijdschr Geneeskd ; 1652021 09 30.
Article in Dutch | MEDLINE | ID: mdl-34854601

ABSTRACT

BACKGROUND: Orthostatic tremor is a rare disease characterized by difficulty with standing still. Patients often undergo a long diagnostic search and often feel underrecognized, partly due to unfamiliarity of physicians with the disease. CASE DESCRIPTION: We report a 72-year-old male experiencing difficulty in standing still, accompanied by a tingling, trembling and painful sensation in the legs, over the last ten years. Several orthopedic and neurological causes had been suspected until neurological examination revealed a 'helicopter sign' upon auscultation of the leg muscles. Tremor registration showed a 14 Hz tremor in the legs upon standing, confirming the diagnosis of orthostatic tremor. There was moderate improvement with pharmacological treatment. CONCLUSION: Orthostatic tremor should be suspected in patients with instability or atypical symptoms upon standing. A neurological referral including tremor registration is recommended in these cases.


Subject(s)
Posture , Tremor , Aged , Electromyography , Humans , Leg , Male , Neurologic Examination , Tremor/diagnosis
15.
Article in English | MEDLINE | ID: mdl-34692229

ABSTRACT

Background: Hemifacial spasm is diagnosed on a clinical base, with certain atypical features alerting the physician for mimics. Phenomenology shown: Hemifacial neuromyotonia/myokymia characterized by tonic hemifacial contraction followed by multifocal undulating hemifacial twitches. Educational value: These features are a red flag for (post-irradiation) facial neuromyotonia/myokymia which generally responds well to low dose carbamazepine.


Subject(s)
Facial Nerve Diseases , Hemifacial Spasm , Isaacs Syndrome , Myokymia , Carbamazepine/therapeutic use , Facial Nerve Diseases/diagnosis , Facial Nerve Diseases/etiology , Hemifacial Spasm/drug therapy , Humans , Isaacs Syndrome/diagnosis , Isaacs Syndrome/drug therapy , Myokymia/diagnosis , Myokymia/drug therapy
16.
EMBO J ; 40(7): e106177, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33694180

ABSTRACT

TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Axonal Transport , DNA-Binding Proteins/genetics , Histone Deacetylase 6/metabolism , Motor Neurons/metabolism , Amyotrophic Lateral Sclerosis/genetics , Cells, Cultured , DNA-Binding Proteins/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Mitochondria/metabolism , Motor Neurons/cytology , Motor Neurons/drug effects , Mutation, Missense
17.
Acta Neuropathol ; 140(5): 625-643, 2020 11.
Article in English | MEDLINE | ID: mdl-32876811

ABSTRACT

A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Animals , Humans
18.
EMBO J ; 39(1): e101112, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31721251

ABSTRACT

Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Ataxia/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Fragile X Syndrome/pathology , Frontotemporal Dementia/pathology , Myotonic Dystrophy/pathology , Neurodegenerative Diseases/pathology , RNA/toxicity , Tremor/pathology , Amyotrophic Lateral Sclerosis/genetics , Ataxia/genetics , Fragile X Syndrome/genetics , Frontotemporal Dementia/genetics , Humans , Mutation , Myotonic Dystrophy/genetics , Neurodegenerative Diseases/genetics , RNA/genetics , Tremor/genetics
19.
Diagn Microbiol Infect Dis ; 95(3): 114859, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31320237

ABSTRACT

OBJECTIVE: To assess the predictive value of JC virus (JCV) PCR in cerebrospinal fluid (CSF) in the diagnosis of progressive multifocal leukoencephalopathy (PML). METHODS: We conducted a retrospective database query to identify patients with positive CSF JCV PCR. Clinical features, final diagnosis and quantitative PCR results were obtained. RESULTS: A positive CSF JCV PCR had a PPV of 10.4% for the diagnosis of PML. A weakly positive PCR had a PPV of 1.6%, whereas a moderately to highly positive PCR had a PPV of 92.3%. A PPV of 0.0% was observed in immunocompetent patients and in patients without compatible clinical or radiological features. CONCLUSIONS: A false-positive CSF JCV PCR is highly prevalent in our clinical practice. This test should be reserved for patients with a clinical suspicion of PML and the quantitative result of the PCR should be taken into account when making the diagnosis of PML.


Subject(s)
JC Virus/isolation & purification , Leukoencephalopathy, Progressive Multifocal/cerebrospinal fluid , Leukoencephalopathy, Progressive Multifocal/diagnosis , Polymerase Chain Reaction , Viral Load/methods , DNA, Viral/blood , DNA, Viral/cerebrospinal fluid , DNA, Viral/urine , False Positive Reactions , Humans , JC Virus/genetics , Leukoencephalopathy, Progressive Multifocal/blood , Leukoencephalopathy, Progressive Multifocal/urine , Polyomavirus Infections/cerebrospinal fluid , Polyomavirus Infections/diagnosis , Predictive Value of Tests , Retrospective Studies
20.
Hum Mol Genet ; 27(7): 1276-1289, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29415125

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder of which the progression is influenced by several disease-modifying factors. Here, we investigated ELP3, a subunit of the elongator complex that modifies tRNA wobble uridines, as one of such ALS disease modifiers. ELP3 attenuated the axonopathy of a mutant SOD1, as well as of a mutant C9orf72 ALS zebrafish model. Furthermore, the expression of ELP3 in the SOD1G93A mouse extended the survival and attenuated the denervation in this model. Depletion of ELP3 in vitro reduced the modified tRNA wobble uridine mcm5s2U and increased abundance of insoluble mutant SOD1, which was reverted by exogenous ELP3 expression. Interestingly, the expression of ELP3 in the motor cortex of ALS patients was reduced and correlated with mcm5s2U levels. Our results demonstrate that ELP3 is a modifier of ALS and suggest a link between tRNA modification and neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , Histone Acetyltransferases , Motor Cortex/metabolism , Nerve Tissue Proteins , RNA, Transfer , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics , RNA, Transfer/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...