Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 155(2-3): 100-11, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16226147

ABSTRACT

In this work, the neutral and basic impurities found in the precipitate of MDMA(*)HCl are presented. MDMA.HCl was prepared by the most popular synthesis methods used in clandestine manufacture, i.e. safrole bromination, Leuckart method and reductive amination with various reducing agents: Al/Hg, NaBH(4), NaBH(3)CN. 3,4-Methylenedioxyphenyl-2-propanone (MDP-2-P), the starting material in Leuckart reaction and reductive amination, was prepared by two different synthesis methods, i.e. by isosafrole oxidation and MDP-2-nitropropene reduction. The extraction of impurities was performed under alkaline and neutral conditions. Impurity profiles were obtained using GC/MS. Each synthesis method is characterised by its own route specific impurities. The influence of pH on the extraction of synthesis markers from 3,4-methylenedioxymethamphetamine (MDMA) samples is discussed and comparison of the profiles of basic and neutral impurities is presented.

2.
Forensic Sci Int ; 152(2-3): 175-84, 2005 Sep 10.
Article in English | MEDLINE | ID: mdl-15978342

ABSTRACT

MDMA was prepared by five different synthesis routes, i.e. by dissolving metal reduction (Al/Hg), cyanoborohydride reduction (NaBH(3)CN), borohydride reduction in low temperature (NaBH(4)), Leuckart reaction and safrole bromination. MDP-2-P was prepared by two different synthesis methods, i.e. by isosafrole oxidation and MDP-2-nitropropene reduction. Each of the synthesis routes was repeated three times in order to establish variation in qualitative composition of route specific impurities between different batches. The analysis of impurities in MDP-2-nitropropene, MDP-2-P, bromosafrole and MDMA was performed with GC-MS. GC/MS was used also in the analysis of impurities in starting materials: safrole, isosafrole and piperonal. As a result of our study the way of determination of MDMA synthesis route determination based on qualitative composition of impurities is proposed.

3.
Forensic Sci Int ; 149(2-3): 181-92, 2005 May 10.
Article in English | MEDLINE | ID: mdl-15749360

ABSTRACT

In our study 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P or PMK) was prepared by two different routes, i.e. by oxidizing isosafrole in an acid medium and by 1-(3,4-methylenedioxyphenyl)-2-nitropropene reduction. The final product-MDP-2-P was subjected to GC/MS analysis. The intermediates and reaction by-products were identified and the 'route specific' impurities were established. The following impurities are the markers of the greatest importance: 1-(3,4-methylenedioxyphenyl)-1-propanone (compound 10, Table 2), 1-methoxy-1-(3,4-methylenedioxyphenyl)-2-propanone (compound 11, Table 2) and 2,2,4-trimethyl-5-(3,4-methylenedioxyphenyl)-[1,3]dioxolane (compound 13, Table 2) (the 'oxidising isosafrole route') and N-cyclohexylacetamide (compound 3, Table 1), 3-methyl-6,7-methylenedioxyisoquinoline-1,4-dione (compound 15, Table 1) (the 'MDP-2-nitropropene reduction route'). Subsequently, MDMA was prepared by reductive amination of MDP-2-P using NaBH4 as reducing agent (so-called 'cool method'). Impurities were extracted with n-heptane under alkaline conditions. The impurity profiles were obtained by means of GC/MS, some reaction by-products were identified by means of the EI mass spectra including low energy EI mass spectra and 'route specific' impurities were established. 4-Methyl-5-(3,4-methylenedioxyphenyl)-[1,3]dioxolan-2-one (compound 22, Table 2), N-methyl-2-methoxy-1-methyl-2-(3,4-methylenedioxyphenyl)-ethaneamine (compound 18, Table 2), 3-methyl-6,7-methylenedioxyisoquinoline-1,4-dione (compound 15, Table 1) and N-cyclohexyloacetamide (compound 3, Table 1) were found to be the synthesis markers of greatest importance.

4.
Pol J Vet Sci ; 7(3): 181-5, 2004.
Article in English | MEDLINE | ID: mdl-15478863

ABSTRACT

Zearalenone is a mycotoxin widely occurring in cereals and animal feed, and it is associated with hyperestrogenism and other reprodutive disorders in animals. A new method of detoxication of feedstuffs involves alkaline hydrolysis of toxic macrolactone (1) (as well as model compounds (2a, 2b)). The method caused modification of zearalenone structure under mild conditions and the toxin underwent irreversible hydrolysis with high efficiency.


Subject(s)
Animal Feed , Mycotoxicosis/veterinary , Zearalenone/chemistry , Zearalenone/toxicity , Animals , Food Contamination/prevention & control , Mycotoxicosis/prevention & control , Structure-Activity Relationship , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...