Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1655: 462490, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34479097

ABSTRACT

In the present work, a pair of molecularly imprinted polymers (MIPs) targeting distinct peptide targets were packed into trap columns and combined for automated duplex analysis of two low abundant small cell lung cancer biomarkers (neuron-specific enolase [NSE] and progastrin-releasing peptide [ProGRP]). Optimization of the on-line molecularly imprinted solid-phase extraction (MISPE) protocol ensured that the MIPs had the necessary affinity and selectivity towards their respective signature peptide targets - NLLGLIEAK (ProGRP) and ELPLYR (NSE) - in serum. Two duplex formats were evaluated: a physical mixture of the two MIPs (1:1 w/w ratio) inside a single trap column, and two separate MIP trap columns connected in series. Both duplex formats enabled the extraction of the peptides from serum. However, the trap columns in series gave superior extraction efficiency (85.8±3.8% and 49.1±6.7% for NLLGLIEAK and ELPLYR, respectively). The optimized protocol showed satisfactory intraday (RSD≤23.4 %) and interday (RSD≤14.6%) precision. Duplex analysis of NSE and ProGRP spiked into digested human serum was linear (R2≥0.98) over the disease range (0.3-30 nM). The estimated limit of detection (LOD) and limit of quantification (LOQ) were 0.11 nM and 0.37 nM, respectively, for NSE, and 0.06 nM and 0.2 nM, respectively, for ProGRP. Both biomarkers were determined at clinically relevant levels. To the best of our knowledge, the present work is the first report of an automated MIP duplex biomarker analysis. It represents a proof of concept for clinically viable duplex analysis of low abundant biomarkers present in human serum or other biofluids.


Subject(s)
Lung Neoplasms , Molecular Imprinting , Biomarkers , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Solid Phase Extraction , Tandem Mass Spectrometry
2.
J Proteome Res ; 19(8): 3573-3582, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32614597

ABSTRACT

Biomarker analysis by mass spectrometry (MS) can allow for the rapid quantification of low abundant biomarkers. However, the complexity of human serum is a limiting factor in MS-based bioanalysis; therefore, novel biomarker enrichment strategies are of interest, particularly if the enrichment strategies are of low cost and are easy to use. One such strategy involves the use of molecularly imprinted polymers (MIPs) as synthetic receptors for biomarker enrichment. In the present study, a magnetic solid-phase extraction (mSPE) platform, based on magnetic MIP (mMIP) sorbents, is disclosed, for use in the MS-based quantification of proteins by the bottom-up approach. Progastrin releasing peptide (ProGRP), a low abundant and clinically sensitive biomarker for small cell lung cancer (SCLC), was used to exemplify the mSPE platform. Four different mMIPs were synthesized, and an mSPE method was developed and optimized for the extraction of low concentrations of tryptic peptides from human serum. The mSPE method enabled the selective extraction of the ProGRP signature peptide, the nonapeptide NLLGLIEAK, prior to quantification of the target via LC-MS/MS. Overall, the mSPE method demonstrated its potential as a low cost, rapid, and straightforward sample preparation method, with demonstrably strong binding, acceptable recoveries, and good compatibility with MS. mMIPs are a potential low-cost alternative to current clinical methods for biomarker analysis.


Subject(s)
Lung Neoplasms , Receptors, Artificial , Biomarkers , Chromatography, Liquid , Humans , Magnetic Phenomena , Solid Phase Extraction , Tandem Mass Spectrometry
3.
Sci Rep ; 7: 44298, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303910

ABSTRACT

Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting.


Subject(s)
Acrylamides/chemistry , Biomarkers, Tumor/blood , Lung Neoplasms/diagnosis , Molecular Imprinting/methods , Peptide Fragments/blood , Phenylurea Compounds/chemistry , Small Cell Lung Carcinoma/diagnosis , Amino Acid Sequence , Benchmarking , Chromatography, Liquid/standards , Humans , Lung Neoplasms/blood , Lung Neoplasms/pathology , Mass Spectrometry/standards , Microspheres , Polymerization , Recombinant Proteins/blood , Small Cell Lung Carcinoma/blood , Small Cell Lung Carcinoma/pathology , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...