Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Nat Biomed Eng ; 8(2): 118-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38057426

ABSTRACT

Spinal muscular atrophy (SMA) is caused by mutations in SMN1. SMN2 is a paralogous gene with a C•G-to-T•A transition in exon 7, which causes this exon to be skipped in most SMN2 transcripts, and results in low levels of the protein survival motor neuron (SMN). Here we show, in fibroblasts derived from patients with SMA and in a mouse model of SMA that, irrespective of the mutations in SMN1, adenosine base editors can be optimized to target the SMN2 exon-7 mutation or nearby regulatory elements to restore the normal expression of SMN. After optimizing and testing more than 100 guide RNAs and base editors, and leveraging Cas9 variants with high editing fidelity that are tolerant of different protospacer-adjacent motifs, we achieved the reversion of the exon-7 mutation via an A•T-to-G•C edit in up to 99% of fibroblasts, with concomitant increases in the levels of the SMN2 exon-7 transcript and of SMN. Targeting the SMN2 exon-7 mutation via base editing or other CRISPR-based methods may provide long-lasting outcomes to patients with SMA.


Subject(s)
Muscular Atrophy, Spinal , RNA-Binding Proteins , Mice , Animals , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SMN Complex Proteins/genetics , RNA, Guide, CRISPR-Cas Systems , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Exons/genetics , Survival of Motor Neuron 2 Protein/genetics
2.
Muscle Nerve ; 68(2): 157-170, 2023 08.
Article in English | MEDLINE | ID: mdl-37409780

ABSTRACT

INTRODUCTION/AIMS: NURTURE (NCT02386553) is an open-label study of nusinersen in children (two SMN2 copies, n = 15; three SMN2 copies, n = 10) who initiated treatment in the presymptomatic stage of spinal muscular atrophy (SMA). A prior analysis after ~3 y showed benefits on survival, respiratory outcomes, motor milestone achievement, and a favorable safety profile. An additional 2 y of follow-up (data cut: February 15, 2021) are reported. METHODS: The primary endpoint is time to death or respiratory intervention (≥6 h/day continuously for ≥7 days or tracheostomy). Secondary outcomes include overall survival, motor function, and safety. RESULTS: Median age of children was 4.9 (3.8-5.5) y at last visit. No children have discontinued the study or treatment. All were alive. No additional children utilized respiratory intervention (defined per primary endpoint) since the prior data cut. Children with three SMN2 copies achieved all World Health Organization (WHO) motor milestones, with all but one milestone in one child within normal developmental timeframes. All 15 children with two SMN2 copies achieved sitting without support, 14/15 walking with assistance, and 13/15 walking alone. Mean Hammersmith Functional Motor Scale Expanded total scores showed continued improvement. Subgroups with two SMN2 copies, minimum baseline compound muscle action potential amplitude ≥2 mV, and no baseline areflexia had better motor and nonmotor outcomes versus all children with two SMN2 copies. DISCUSSION: These results demonstrate the value of early treatment, durability of treatment effect, and favorable safety profile after ~5 y of nusinersen treatment. Inclusion/exclusion criteria and baseline characteristics should be considered when interpreting presymptomatic SMA trial data.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Child , Humans , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides/therapeutic use , Walking , Spinal Muscular Atrophies of Childhood/drug therapy
3.
bioRxiv ; 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36711797

ABSTRACT

Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the SMN1 gene. Despite the development of various therapies, outcomes can remain suboptimal in SMA infants and the duration of such therapies are uncertain. SMN2 is a paralogous gene that mainly differs from SMN1 by a C•G-to-T•A transition in exon 7, resulting in the skipping of exon 7 in most SMN2 transcripts and production of only low levels of survival motor neuron (SMN) protein. Genome editing technologies targeted to the SMN2 exon 7 mutation could offer a therapeutic strategy to restore SMN protein expression to normal levels irrespective of the patient SMN1 mutation. Here, we optimized a base editing approach to precisely edit SMN2, reverting the exon 7 mutation via an A•T-to-G•C base edit. We tested a range of different adenosine base editors (ABEs) and Cas9 enzymes, resulting in up to 99% intended editing in SMA patient-derived fibroblasts with concomitant increases in SMN2 exon 7 transcript expression and SMN protein levels. We generated and characterized ABEs fused to high-fidelity Cas9 variants which reduced potential off-target editing. Delivery of these optimized ABEs via dual adeno-associated virus (AAV) vectors resulted in precise SMN2 editing in vivo in an SMA mouse model. This base editing approach to correct SMN2 should provide a long-lasting genetic treatment for SMA with advantages compared to current nucleic acid, small molecule, or exogenous gene replacement therapies. More broadly, our work highlights the potential of PAMless SpRY base editors to install edits efficiently and safely.

4.
Sci Adv ; 8(33): eabo7112, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35977029

ABSTRACT

Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.


Subject(s)
DNA Helicases , Neurodevelopmental Disorders , Animals , Mice , Neurodevelopmental Disorders/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins , Stress Granules
5.
Nat Med ; 28(7): 1381-1389, 2022 07.
Article in English | MEDLINE | ID: mdl-35715566

ABSTRACT

SPR1NT ( NCT03505099 ) was a Phase III, multicenter, single-arm study to investigate the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic SMN1 mutations treated at ≤6 weeks of life. Here, we report final results for 14 children with two copies of SMN2, expected to develop spinal muscular atrophy (SMA) type 1. Efficacy was compared with a matched Pediatric Neuromuscular Clinical Research natural-history cohort (n = 23). All 14 enrolled infants sat independently for ≥30 seconds at any visit ≤18 months (Bayley-III item #26; P < 0.001; 11 within the normal developmental window). All survived without permanent ventilation at 14 months as per protocol; 13 maintained body weight (≥3rd WHO percentile) through 18 months. No child used nutritional or respiratory support. No serious adverse events were considered related to treatment by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for children expected to develop SMA type 1, highlighting the urgency for universal newborn screening.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Child , Humans , Infant , Infant, Newborn , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Neonatal Screening , Spinal Muscular Atrophies of Childhood/drug therapy , Spinal Muscular Atrophies of Childhood/genetics , Survival of Motor Neuron 2 Protein/genetics
6.
Nat Med ; 28(7): 1390-1397, 2022 07.
Article in English | MEDLINE | ID: mdl-35715567

ABSTRACT

Most children with biallelic SMN1 deletions and three SMN2 copies develop spinal muscular atrophy (SMA) type 2. SPR1NT ( NCT03505099 ), a Phase III, multicenter, single-arm trial, investigated the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic SMN1 mutations treated within six postnatal weeks. Of 15 children with three SMN2 copies treated before symptom onset, all stood independently before 24 months (P < 0.0001; 14 within normal developmental window), and 14 walked independently (P < 0.0001; 11 within normal developmental window). All survived without permanent ventilation at 14 months; ten (67%) maintained body weight (≥3rd WHO percentile) without feeding support through 24 months; and none required nutritional or respiratory support. No serious adverse events were considered treatment-related by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for presymptomatic infants at risk of SMA type 2, underscoring the urgency of early identification and intervention.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Child , Humans , Infant , Muscular Atrophy, Spinal/genetics , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/therapy , Survival of Motor Neuron 2 Protein/genetics
7.
Ann Clin Transl Neurol ; 9(6): 810-818, 2022 06.
Article in English | MEDLINE | ID: mdl-35567422

ABSTRACT

OBJECTIVE: The US risdiplam expanded access program (EAP; NCT04256265) was opened to provide individuals with Type 1 or 2 spinal muscular atrophy (SMA) who had no satisfactory treatment options access to risdiplam prior to commercial availability. The program was designed to collect safety data during risdiplam treatment. METHODS: Patients were enrolled from 23 non-preselected sites across 17 states and treated with risdiplam orally once daily. Eligible patients had a 5q autosomal recessive Type 1 or 2 SMA diagnosis, were aged ≥2 months at enrollment, and were ineligible for available and approved SMA treatments or could not continue treatment due to a medical condition, lack/loss of efficacy, or the COVID-19 pandemic. RESULTS: Overall, 155 patients with Type 1 (n = 73; 47.1%) or 2 SMA (n = 82; 52.9%) were enrolled and 149 patients (96.1%) completed the EAP (defined as obtaining access to commercial risdiplam, if desired). The median treatment duration was 4.8 months (range, 0.3-9.2 months). The median patient age was 11 years (range, 0-50 years), and most patients (n = 121; 78%) were previously treated with a disease-modifying therapy. The most frequently reported adverse events were diarrhea (n = 10; 6.5%), pyrexia (n = 7; 4.5%), and upper respiratory tract infection (n = 5; 3.2%). The most frequently reported serious adverse event was pneumonia (n = 3; 1.9%). No deaths were reported. INTERPRETATION: In the EAP, the safety profile of risdiplam was similar to what was reported in pivotal risdiplam clinical trials. These safety data provide further support for the use of risdiplam in the treatment of adult and pediatric patients with SMA.


Subject(s)
COVID-19 Drug Treatment , Muscular Atrophy, Spinal , Adult , Azo Compounds/therapeutic use , Child , Humans , Muscular Atrophy, Spinal/drug therapy , Pandemics , Pyrimidines
8.
Eur J Neurol ; 29(8): 2420-2430, 2022 08.
Article in English | MEDLINE | ID: mdl-35510740

ABSTRACT

BACKGROUND AND PURPOSE: The antisense oligonucleotide nusinersen (Spinraza) regulates splicing of the survival motor neuron 2 (SMN2) messenger RNA to increase SMN protein expression. Nusinersen has improved ventilator-free survival and motor function outcomes in infantile onset forms of spinal muscular atrophy (SMA), treated early in the course of the disease. However, the response in later onset forms of SMA is highly variable and dependent on symptom severity and disease duration at treatment initiation. Therefore, we aimed to identify novel noninvasive biomarkers that could predict the response to nusinersen in type II and III SMA patients. METHODS: Thirty-four SMA patients were included. We applied next generation sequencing to identify microRNAs in the cerebrospinal fluid (CSF) as candidate biomarkers predicting response to nusinersen. Hammersmith Functional Motor Scale Expanded (HFMSE) was conducted at baseline and 6 months after initiation of nusinersen therapy to assess motor function. Patients changing by ≥3 or ≤0 points in the HFMSE total score were considered to be responders or nonresponders, respectively. RESULTS: Lower baseline levels of two muscle microRNAs (miR-206 and miR-133a-3p), alone or in combination, predicted the clinical response to nusinersen after 6 months of therapy. Moreover, miR-206 levels were inversely correlated with the HFMSE score. CONCLUSIONS: Lower miR-206 and miR-133a-3p in the CSF predict more robust clinical response to nusinersen treatment in later onset SMA patients. These novel findings have high clinical relevance for identifying early treatment response to nusinersen in later onset SMA patients and call for testing the ability of miRNAs to predict more sustained long-term benefit.


Subject(s)
Biomarkers, Pharmacological , MicroRNAs , Oligonucleotides , Spinal Muscular Atrophies of Childhood , Biomarkers, Pharmacological/cerebrospinal fluid , Humans , MicroRNAs/cerebrospinal fluid , Muscles , Oligonucleotides/therapeutic use , Spinal Muscular Atrophies of Childhood/cerebrospinal fluid , Spinal Muscular Atrophies of Childhood/therapy
9.
Neuromuscul Disord ; 32(2): 125-134, 2022 02.
Article in English | MEDLINE | ID: mdl-35063329

ABSTRACT

As trials and treatments for spinal muscular atrophy (SMA) rapidly evolve, understanding the natural history and potential utility of the 10-meter walk/run test (10MWRT) in ambulant individuals is critical. Study aims were to: 1) establish change over time and across age for 10MWRT time in an untreated natural history cohort of young, ambulatory participants with SMA and 2) identify relations between 10MWRT time and age, SMA type, SMN2 copy number and anthropometrics. Untreated individuals (n = 56) age 2 to 21 years who were enrolled in a long-term natural history study between 2005 and 2014 and met inclusion criteria were included. Linear mixed effects models were used to assess changes in 10MWRT time with age and associations with SMA type, SMN2 copy number, and body mass. SMA type 3b (versus 3a), SMN2 copy number 4 (versus 3) and lower body mass were associated with faster 10MWRT. 10MWRT performance improved between 3 and 8 years of age, was stable between 9 and 10, and gradually declined from 11 to 18. Findings provide the first longitudinal natural history report of 10MWRT time in young individuals with SMA and offer a critical foundation for interpreting childhood change in short distance walking speed with pharmacologic treatment.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Humans , Longitudinal Studies , Muscular Atrophy, Spinal/diagnosis , Spinal Muscular Atrophies of Childhood/diagnosis , Young Adult
10.
Mol Ther Methods Clin Dev ; 23: 524-538, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34853799

ABSTRACT

This longitudinal cohort study aimed to determine whether circulating neurofilaments (NFs) can monitor response to molecular therapies in newborns with spinal muscular atrophy (SMA; NCT02831296). We applied a mixed-effect model to examine differences in serum NF levels among healthy control infants (n = 13), untreated SMA infants (n = 68), and SMA infants who received the genetic therapies nusinersen and/or onasemnogene abeparvovec (n = 22). Increased NF levels were inversely associated with SMN2 copy number. SMA infants treated with either nusinersen or onasemnogene abeparvovec achieved important motor milestones not observed in the untreated cohort. NF levels declined more rapidly in the nusinersen cohort as compared with the untreated cohort. Unexpectedly, those receiving onasemnogene abeparvovec monotherapy showed a significant rise in NF levels regardless of SMN2 copy number. In contrast, symptomatic SMA infants who received nusinersen, followed by onasemnogene abeparvovec within a short interval after, did not show an elevation in NF levels. While NF cannot be used as the single marker to predict outcomes, the elevated NF levels observed with onasemnogene abeparvovec and its absence in infants treated first with nusinersen may indicate a protective effect of co-therapy during a critical period of vulnerability to acute denervation.

11.
Int J Neonatal Screen ; 7(2)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071063

ABSTRACT

Massachusetts began newborn screening (NBS) for Spinal Muscular Atrophy (SMA) following the availability of new treatment options. The New England Newborn Screening Program developed, validated, and implemented a screening algorithm for the detection of SMA-affected infants who show absent SMN1 Exon 7 by Real-Time™ quantitative PCR (qPCR). We screened 179,467 neonates and identified 9 SMA-affected infants, all of whom were referred to a specialist by day of life 6 (average and median 4 days of life). Another ten SMN1 hybrids were observed but never referred. The nine referred infants who were confirmed to have SMA were entered into treatment protocols. Early data show that some SMA-affected children have remained asymptomatic and are meeting developmental milestones and some have mild to moderate delays. The Massachusetts experience demonstrates that SMA NBS is feasible, can be implemented on a population basis, and helps engage infants for early treatment to maximize benefit.

12.
FASEB J ; 35(7): e21714, 2021 07.
Article in English | MEDLINE | ID: mdl-34118107

ABSTRACT

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Subject(s)
Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Neoplasms/pathology , Oxidative Stress/physiology , Animals , Cachexia/pathology , Disease Progression , Glycolysis/physiology , Male , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Slow-Twitch/pathology , Oxidation-Reduction , Oxidative Phosphorylation , Rats , Rats, Wistar
13.
Ann Clin Transl Neurol ; 8(7): 1495-1501, 2021 07.
Article in English | MEDLINE | ID: mdl-33991176

ABSTRACT

Despite newly available treatments for spinal muscular atrophy (SMA), novel circulating biomarkers are still critically necessary to track SMA progression and therapeutic response. To identify potential biomarkers, we performed whole-blood RNA sequencing analysis in SMA type 1 subjects under 1 year old and age-matched healthy controls. Our analysis revealed the Heat Shock Protein Family A Member 7 (HSPA7)/heat shock 70kDa protein 7 (HSP70B) as a novel candidate biomarker to track SMA progression early in life. Changes in circulating HSP70B protein levels were associated with changes in circulating neurofilament levels in SMA newborns and infants. Future studies will determine whether HSP70B levels respond to molecular therapies.


Subject(s)
HSP70 Heat-Shock Proteins/blood , Muscular Atrophy, Spinal/blood , Muscular Atrophy, Spinal/diagnosis , Biomarkers/blood , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male
14.
Mol Ther Methods Clin Dev ; 21: 76-82, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33768131

ABSTRACT

Spinal muscular atrophy is a progressive, recessively inherited monogenic neurologic disease, the genetic root cause of which is the absence of a functional survival motor neuron 1 gene. Onasemnogene abeparvovec (formerly AVXS-101) is an adeno-associated virus serotype 9 vector-based gene therapy that delivers a fully functional copy of the human survival motor neuron gene. We report anti-adeno-associated virus serotype 9 antibody titers for patients with spinal muscular atrophy when they were screened for eligibility in the onasemnogene abeparvovec clinical trials (intravenous and intrathecal administration) and managed access programs (intravenous). Through December 31, 2019, 196 patients and 155 biologic mothers were screened for anti-adeno-associated virus serotype 9 binding antibodies with an enzyme-linked immunosorbent assay. Of these, 15 patients (7.7%) and 23 biologic mothers (14.8%) had titers >1:50 on their initial screening tests. Eleven patients (5.6%) had elevated titers on their final screening tests. The low percentage of patients with exclusionary antibody titers indicates that most infants with spinal muscular atrophy type 1 should be able to receive onasemnogene abeparvovec. Retesting may identify patients whose antibody titers later decrease to below the threshold for treatment, and retesting should be considered for patients with anti-adeno-associated virus serotype 9 antibody titers >1:50.

15.
Sci Transl Med ; 13(578)2021 01 27.
Article in English | MEDLINE | ID: mdl-33504650

ABSTRACT

Gene replacement and pre-mRNA splicing modifier therapies represent breakthrough gene targeting treatments for the neuromuscular disease spinal muscular atrophy (SMA), but mechanisms underlying variable efficacy of treatment are incompletely understood. Our examination of severe infantile onset human SMA tissues obtained at expedited autopsy revealed persistence of developmentally immature motor neuron axons, many of which are actively degenerating. We identified similar features in a mouse model of severe SMA, in which impaired radial growth and Schwann cell ensheathment of motor axons began during embryogenesis and resulted in reduced acquisition of myelinated axons that impeded motor axon function neonatally. Axons that failed to ensheath degenerated rapidly postnatally, specifically releasing neurofilament light chain protein into the blood. Genetic restoration of survival motor neuron protein (SMN) expression in mouse motor neurons, but not in Schwann cells or muscle, improved SMA motor axon development and maintenance. Treatment with small-molecule SMN2 splice modifiers beginning immediately after birth in mice increased radial growth of the already myelinated axons, but in utero treatment was required to restore axonal growth and associated maturation, prevent subsequent neonatal axon degeneration, and enhance motor axon function. Together, these data reveal a cellular basis for the fulminant neonatal worsening of patients with infantile onset SMA and identify a temporal window for more effective treatment. These findings suggest that minimizing treatment delay is critical to achieve optimal therapeutic efficacy.


Subject(s)
Muscular Atrophy, Spinal , Animals , Axons , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Motor Neurons , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics
16.
Neurogenetics ; 22(1): 53-64, 2021 03.
Article in English | MEDLINE | ID: mdl-33415588

ABSTRACT

Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.


Subject(s)
Muscular Atrophy, Spinal/genetics , Mutation/genetics , Survival of Motor Neuron 1 Protein/genetics , Gene Conversion/genetics , Gene Deletion , Humans , Motor Neurons/metabolism , Phenotype , Polymerase Chain Reaction/methods , Survival of Motor Neuron 2 Protein/genetics
18.
Eur J Med Genet ; 63(12): 104063, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32947049

ABSTRACT

OBJECTIVE: To perform genotype-phenotype, clinical and molecular analysis in a large 3-generation family with autosomal dominant congenital spinal muscular atrophy. METHODS: Using a combined genetic approach including whole genome scanning, next generation sequencing-based multigene panel, whole genome sequencing, and targeted variant Sanger sequencing, we studied the proband and multiple affected individuals of this family who presented bilateral proximal lower limb muscle weakness and atrophy. RESULTS: We identified a novel heterozygous variant, c.1826T > C; p.Ile609Thr, in the DYNC1H1 gene localized within the common haplotype in the 14q32.3 chromosomal region which cosegregated with disease in this large family. Within the family, affected individuals were found to have a wide array of clinical variability. Although some individuals presented the typical lower motor neuron phenotype with areflexia and denervation, others presented with muscle weakness and atrophy, hyperreflexia, and absence of denervation suggesting a predominant upper motor neuron disease. In addition, some affected individuals presented with an intermediate phenotype characterized by hyperreflexia and denervation, expressing a combination of lower and upper motor neuron defects. CONCLUSION: Our study demonstrates the wide clinical variability associated with a single disease causing variant in DYNC1H1 gene and this variant demonstrated a high penetrance within this large family.


Subject(s)
Cytoplasmic Dyneins/genetics , Muscular Atrophy, Spinal/genetics , Mutation, Missense , Adolescent , Adult , Child , Child, Preschool , Female , Heterozygote , Humans , Lower Extremity/physiopathology , Male , Middle Aged , Motor Neurons/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy, Spinal/pathology , Pedigree , Phenotype , Reflex , Upper Extremity/physiopathology
19.
Muscle Nerve ; 62(3): 351-357, 2020 09.
Article in English | MEDLINE | ID: mdl-32511765

ABSTRACT

INTRODUCTION: We sought to determine whether survival motor neuron (SMN) protein blood levels correlate with denervation and SMN2 copies in spinal muscular atrophy (SMA). METHODS: Using a mixed-effect model, we tested associations between SMN levels, compound muscle action potential (CMAP), and SMN2 copies in a cohort of 74 patients with SMA. We analyzed a subset of 19 of these patients plus four additional patients who had been treated with received gene therapy to examine SMN trajectories early in life. RESULTS: Patients with SMA who had lower CMAP values had lower circulating SMN levels (P = .04). Survival motor neuron protein levels were different between patients with two and three SMN2 copies (P < .0001) and between symptomatic and presymptomatic patients (P < .0001), with the highest levels after birth and progressive decline over the first 3 years. Neither nusinersen nor gene therapy clearly altered SMN levels. DISCUSSION: These data provide evidence that whole blood SMN levels correlate with SMN2 copy number and severity of denervation.


Subject(s)
Action Potentials/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy, Spinal/blood , Survival of Motor Neuron 1 Protein/blood , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/physiopathology , Severity of Illness Index
20.
Pediatr Phys Ther ; 32(3): 235-241, 2020 07.
Article in English | MEDLINE | ID: mdl-32569095

ABSTRACT

PURPOSE: The purpose of this study was to describe stander use in a natural history cohort of drug therapy-naïve children with spinal muscular atrophy (SMA) who are not walking and identify factors associated with consistent stander use. METHODS: Data from 397 children with SMA types 1 and 2 characterized the prevalence and frequency of stander use. Predictors of consistent stander use explored were SMA type, survival motor neuron 2 gene (SMN2) copy number, respiratory support, and motor performance. RESULTS: Prevalence of consistent stander use was 13% in type 1 and 68% in type 2. SMA type, SMN2 copy number, respiratory support, and head rotation control each predicted consistent stander use. CONCLUSIONS: Findings characterize stander use in children with SMA who are not walking, address important safety considerations, identify factors that may inform physical therapists' clinical decision-making related to standing program prescription, and provide guidance for future prospective studies.


Subject(s)
Motor Skills Disorders/rehabilitation , Practice Guidelines as Topic , Rehabilitation/statistics & numerical data , Rehabilitation/standards , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/rehabilitation , Standing Position , Child , Child, Preschool , Cohort Studies , Female , Gene Dosage , Humans , Infant , Infant, Newborn , Male , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...