Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
2.
Microbiology (Reading) ; 169(11)2023 11.
Article in English | MEDLINE | ID: mdl-37942787

ABSTRACT

Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often present in people with respiratory diseases such as cystic fibrosis (CF). People with CF (pwCF) experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that Pseudomonas aeruginosa promotes persistence of S. maltophilia in mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct nearly complete genomes of 10 clinical isolates. The genomes of these isolates were then compared with all publicly available S. maltophilia genome assemblies, and each isolate was then evaluated for colonization/persistence in vivo, both alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent between strains, there was considerable variability in both genome structure and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in experimental mouse respiratory infections in the presence or absence of P. aeruginosa. Ultimately, this study gives us a greater understanding of the genomic diversity of clinical S. maltophilia isolates, and how this genomic diversity relates to both interactions with other pulmonary pathogens and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.


Subject(s)
Coinfection , Cystic Fibrosis , Gram-Negative Bacterial Infections , Respiratory Tract Infections , Stenotrophomonas maltophilia , Humans , Mice , Animals , Stenotrophomonas maltophilia/genetics , Genomics , Cystic Fibrosis/complications , Pseudomonas aeruginosa/genetics , Genetic Variation
3.
Infect Immun ; 91(12): e0041623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37909751

ABSTRACT

Cystic fibrosis (CF) is a genetic disease affecting epithelial ion transport, resulting in thickened mucus and impaired mucociliary clearance. Persons with CF (pwCF) experience life-long infections of the respiratory mucosa caused by a diverse array of opportunists, which are leading causes of morbidity and mortality. In recent years, there has been increased appreciation for the range and diversity of microbes causing CF-related respiratory infections. The introduction of new therapeutics and improved detection methodology has revealed CF-related opportunists such as Achromobacter xylosoxidans (Ax). Ax is a Gram-negative bacterial species which is widely distributed in environmental sources and has been increasingly observed in sputa and other samples from pwCF, typically in patients in later stages of CF disease. In this study, we characterized CF clinical isolates of Ax and tested colonization and persistence of Ax in respiratory infection using immortalized human CF respiratory epithelial cells and BALB/c mice. Genomic analyses of clinical Ax isolates showed homologs for factors including flagellar synthesis, antibiotic resistance, and toxin secretion systems. Ax isolates adhered to polarized cultures of CFBE41o- human immortalized CF bronchial epithelial cells and caused significant cytotoxicity and depolarization of cell layers. Ax colonized and persisted in mouse lungs for up to 72 h post infection, with inflammatory consequences that include increased neutrophil influx in the lung, lung damage, cytokine production, and mortality. We also identified genes that are differentially expressed in synthetic CF sputum media. Based on these results, we conclude that Ax is an opportunistic pathogen of significance in CF.


Subject(s)
Achromobacter denitrificans , Cystic Fibrosis , Gram-Negative Bacterial Infections , Respiratory Tract Infections , Animals , Mice , Humans , Achromobacter denitrificans/genetics , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Sputum/microbiology , Gram-Negative Bacterial Infections/microbiology , Gene Expression Profiling
4.
bioRxiv ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37503051

ABSTRACT

Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often found in respiratory diseases such as cystic fibrosis (CF). Patients with CF experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that P. aeruginosa promotes persistence of S. maltophilia mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct complete genomes of 10 clinical isolates which were then compared with the larger phylogeny of S. maltophilia genomic sequence data, and compared colonization/persistence in vivo, alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent, there was considerable variability in arrangement and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in vivo in experimental mouse respiratory infection. Ultimately, this study gives us a greater understanding of the genomic diversity of S. maltophilia isolated from patients, and how this genomic diversity relates to interactions with other pulmonary pathogens, and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.

5.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066231

ABSTRACT

Cystic fibrosis (CF) is a genetic disease affecting epithelial ion transport, resulting in thickened mucus and impaired mucociliary clearance. Persons with CF (pwCF) experience life-long respiratory mucosal infections caused by a diverse array of opportunists, and these infections are a leading cause of morbidity and mortality for pwCF. In recent years, there has been increased appreciation for the range and diversity of microbes in CF-related respiratory infections. Introduction of new therapeutics and improved detection methodology has revealed CF related opportunists such as Achromobacter xylosoxidans (Ax). Ax is a Gram-negative bacterial species that is widely distributed in the environment and has been increasingly observed in sputa and other samples from pwCF; typically Ax infections occur in patients in later stages of CF disease. In this study, we characterized CF clinical isolates of Ax and tested colonization and persistence of Ax in respiratory infection using immortalized human CF respiratory epithelial cells and BALB/c mice. Genomic analyses of clinical Ax isolates showed homologs for factors involved in flagellar synthesis, antibiotic resistance, and toxin secretion systems. Ax isolates adhered to polarized CFBE14o- human immortalized CF bronchial epithelial cells and caused significant cytotoxicity and depolarization. Ax colonized and persisted in mouse lung for up to 72 hours post infection, with inflammatory consequences that include increased neutrophilia, lung damage, cytokine production, and mortality. Transcript profiling reveled differential expression of Ax genes during growth in SCFM2 synthetic CF sputum media. Based on these results, we conclude that Ax is an opportunistic pathogen of significance in CF.

6.
Microbiology (Reading) ; 169(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748431

ABSTRACT

Cystic fibrosis (CF) is a genetic disorder affecting epithelial ion transport, which among other impacts results in defective mucociliary clearance and innate defenses in the respiratory tract. Consequently, people with CF experience lifelong infections of the respiratory mucosa that are chronic and polymicrobial in nature. Young children with CF are initially colonized by opportunists like nontypeable Haemophilus influenzae (NTHi), which normally resides within the microbiome of the nasopharynx and upper airways and can also cause infections of the respiratory mucosa that include bronchitis and otitis media. NTHi is typically supplanted by other microbes as patients age; for example, people with CF are often chronically infected with mucoid strains of Pseudomonas aeruginosa, which prior work in our laboratory has shown to promote colonization and persistence by other opportunists that include Stenotrophomonas maltophilia. Our previous work has shown that polymicrobial infection impacts host colonization and persistence of incoming microbes via diverse mechanisms that include priming of host immunity that can promote microbial clearance, and cooperativity within polymicrobial biofilms, which can promote persistence. In infection studies with BALB/c Cftrtm1UNC mice, results showed, as previously observed for WT BALB/c mice, preceding infection with NTHi decreased colonization and persistence by P. aeruginosa. Likewise, polymicrobial infection of BALB/c Cftrtm1UNC and C57BL/6 Cftrtm1UncTg(FABPhCFTR)1Jaw/J mice showed correlation between S. maltophilia and P. aeruginosa, with increased bacterial colonization and lung pathology. Based on these results, we conclude that our previous observations regarding polymicrobial infections with CF opportunists in WT mice are also validated using CF mice.


Subject(s)
Coinfection , Cystic Fibrosis , Pseudomonas Infections , Mice , Animals , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Coinfection/microbiology , Mice, Inbred C57BL , Respiratory System , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics
7.
Microbiol Spectr ; 11(1): e0384622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36472421

ABSTRACT

Stenotrophomonas maltophilia is an emerging opportunistic respiratory pathogen in people with cystic fibrosis (CF). S. maltophilia is frequently observed in polymicrobial infections, and we have previously shown that Pseudomonas aeruginosa promotes colonization and persistence of S. maltophilia in mouse respiratory infections. In this study, we used host and bacterial RNA sequencing to further understand the molecular underpinnings of this interaction. To evaluate S. maltophilia transcript profiles, we used a recently described method for selective capture of bacterial mRNA transcripts with strain-specific RNA probes. We found that factors associated with the type IV pilus, including the histidine kinase subunit of a chemotactic two-component signaling system (chpA), had increased transcript levels during dual-species infection. Using immortalized CF respiratory epithelial cells, we found that infection with P. aeruginosa increases adherence of S. maltophilia, at least in part due to disruption of epithelial tight junctions. In contrast, an isogenic S. maltophilia chpA mutant strain lacked cooperative adherence to CF epithelia and decreased bacterial burden in vivo in dual-species infections with P. aeruginosa. Similarly, P. aeruginosa lacking elastase (lasB) failed to promote S. maltophilia adherence or bacterial colonization and persistence in vivo. Based on these results, we propose that disruption of lung tissue integrity by P. aeruginosa facilitates adherence of S. maltophilia to the lung epithelia, likely in a type IV pilus-dependent manner. These data lend insight into S. maltophilia colonization and persistence in people in later stages of CF disease and may have implications for interactions with other bacterial opportunists. IMPORTANCE Despite advances in treatment options for people with CF, complications of bacterial infections remain the greatest driver of morbidity and mortality in this patient population. These infections often involve more than one bacterial pathogen, and our understanding of how interspecies interactions impact disease progression is lacking. Previous work in our lab found that two CF pathogens, Stenotrophomonas maltophilia and Pseudomonas aeruginosa, can work together in the lung to cause more severe infection. In the present study, we found that infection with P. aeruginosa promotes persistence of S. maltophilia by interfering with epithelial barrier integrity. Depolarization of the epithelial cell layer by P. aeruginosa-secreted elastase increased S. maltophilia adherence, likely in a type IV pilus-dependent manner. Ultimately, this work sheds light on the molecular mechanisms governing an important multispecies interaction seen in pulmonary diseases such as CF.


Subject(s)
Cystic Fibrosis , Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Humans , Animals , Mice , Pseudomonas aeruginosa/genetics , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/metabolism , Epithelial Cells/microbiology , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Respiratory Mucosa , Gram-Negative Bacterial Infections/microbiology
8.
Microbiol Spectr ; 10(3): e0091622, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35536022

ABSTRACT

Streptococcus pneumoniae is the most common cause of bacterial illness worldwide. Current vaccines based on the polysaccharide capsule are only effective against a limited number of the >100 capsular serotypes. A universal vaccine based on conserved protein antigens requires a thorough understanding of gene expression in S. pneumoniae. All S. pneumoniae strains encode the SpnIII Restriction-Modification system. This system contains a phase-variable methyltransferase that switches specificity, and controls expression of multiple genes-a phasevarion. We examined the role of this phasevarion during pneumococcal pathobiology, and determined if phase variation resulted in differences in expression of currently investigated conserved protein antigens. Using locked strains that express a single methyltransferase specificity, we found differences in clinically relevant traits, including survival in blood, and adherence to and invasion of human cells. We also observed differences in expression of numerous proteinaceous vaccine candidates, which complicates selection of antigens for inclusion in a universal protein-based pneumococcal vaccine. This study will inform vaccine design against S. pneumoniae by ensuring only stably expressed candidates are included in a rationally designed vaccine. IMPORTANCE S. pneumoniae is the world's foremost bacterial pathogen. S. pneumoniae encodes a phasevarion (phase-variable regulon), that results in differential expression of multiple genes. Previous work demonstrated that the pneumococcal SpnIII phasevarion switches between six different expression states, generating six unique phenotypic variants in a pneumococcal population. Here, we show that this phasevarion generates multiple phenotypic differences relevant to pathobiology. Importantly, expression of conserved protein antigens varies with phasevarion switching. As capsule expression, a major pneumococcal virulence factor, is also controlled by the phasevarion, our work will inform the selection of the best candidates to include in a rationally designed, universal pneumococcal vaccine.


Subject(s)
Phase Variation , Streptococcus pneumoniae , Humans , Methyltransferases/genetics , Pneumococcal Vaccines/genetics , Virulence
9.
mSphere ; 7(1): e0084721, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35044805

ABSTRACT

Smoke exposure is a risk factor for community-acquired pneumonia, which is typically caused by host-adapted airway opportunists like nontypeable Haemophilus influenzae (NTHi). Genomic analyses of NTHi revealed homologs of enzymes with predicted roles in reduction of protein thiols, which can have key roles in oxidant resistance. Using a clinical NTHi isolate (NTHi 7P49H1), we generated isogenic mutants in which homologs of glutathione reductase (open reading frame NTHI 0251), thioredoxin-dependent thiol peroxidase (NTHI 0361), thiol peroxidase (NTHI 0907), thioredoxin reductase (NTHI 1327), and glutaredoxin/peroxiredoxin (NTHI 0705) were insertionally inactivated. Bacterial protein analyses revealed that protein oxidation after hydrogen peroxide treatment was elevated in all the mutant strains. Similarly, each of these mutants was less resistant to oxidative killing than the parental strain; these phenotypes were reversed by genetic complementation. Analysis of biofilm communities formed by the parental and mutant strains showed reduction in overall biofilm thickness and density and significant sensitization of bacteria within the biofilm structure to oxidative killing. Experimental respiratory infection of smoke-exposed mice with NTHi 7P49H1 showed significantly increased bacterial counts compared to control mice. Immunofluorescent staining of lung tissues showed NTHi communities on lung mucosae, interspersed with neutrophil extracellular traps; these bacteria had transcript profiles consistent with NTHi biofilms. In contrast, infection with the panel of NTHi mutants showed a significant decrease in bacterial load. Comparable results were observed in bactericidal assays with neutrophil extracellular traps in vitro. Thus, we conclude that thiol-mediated redox homeostasis is a determinant of persistence of NTHi within biofilm communities. IMPORTANCE Chronic bacterial respiratory infections are a significant problem for smoke-exposed individuals, especially those with chronic obstructive pulmonary disease (COPD). These infections often persist despite antibiotic use. Thus, the bacteria remain and contribute to the development of inflammation and other respiratory problems. Respiratory bacteria often form biofilms within the lungs; during growth in a biofilm, their antibiotic and oxidative stress resistance is incredibly heightened. It is well documented that redox homeostasis genes are upregulated during this phase of growth. Many common respiratory pathogens, such as NTHi and Streptococcus pneumoniae, are reliant on scavenging from the host the necessary components they need to maintain these redox systems. This work begins to lay the foundation for exploiting this requirement and thiol redox homeostasis pathways of these bacteria as a therapeutic target for managing chronic respiratory bacterial infections, which are resistant to traditional antibiotic treatments alone.


Subject(s)
Haemophilus Infections , Otitis Media , Animals , Anti-Bacterial Agents/metabolism , Biofilms , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Mice , Otitis Media/microbiology , Oxidation-Reduction , Oxidative Stress , Peroxidases/metabolism , Sulfhydryl Compounds/metabolism
10.
Microbiology (Reading) ; 168(1)2022 01.
Article in English | MEDLINE | ID: mdl-35077346

ABSTRACT

Pseudomonas aeruginosa is a common opportunistic pathogen that can cause chronic infections in multiple disease states, including respiratory infections in patients with cystic fibrosis (CF) and non-CF bronchiectasis. Like many opportunists, P. aeruginosa forms multicellular biofilm communities that are widely thought to be an important determinant of bacterial persistence and resistance to antimicrobials and host immune effectors during chronic/recurrent infections. Poly (acetyl, arginyl) glucosamine (PAAG) is a glycopolymer that has antimicrobial activity against a broad range of bacterial species, and also has mucolytic activity, which can normalize the rheological properties of cystic fibrosis mucus. In this study, we sought to evaluate the effect of PAAG on P. aeruginosa bacteria within biofilms in vitro, and in the context of experimental pulmonary infection in a rodent infection model. PAAG treatment caused significant bactericidal activity against P. aeruginosa biofilms, and a reduction in the total biomass of preformed P. aeruginosa biofilms on abiotic surfaces, as well as on the surface of immortalized cystic fibrosis human bronchial epithelial cells. Studies of membrane integrity indicated that PAAG causes changes to P. aeruginosa cell morphology and dysregulates membrane polarity. PAAG treatment reduced infection and consequent tissue inflammation in experimental P. aeruginosa rat infections. Based on these findings we conclude that PAAG represents a novel means to combat P. aeruginosa infection, and may warrant further evaluation as a therapeutic.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Cystic Fibrosis/microbiology , Glucosamine/pharmacology , Glucosamine/therapeutic use , Humans , Lung/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Rats
11.
Infect Immun ; 90(2): e0056821, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34780275

ABSTRACT

Patients with cystic fibrosis (CF) experience lifelong respiratory infections, which are a significant cause of morbidity and death. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted, and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa. In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of P. aeruginosa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater P. aeruginosa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by P. aeruginosa resulted in significantly lower levels of P. aeruginosa, compared to infection with P. aeruginosa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines, compared with P. aeruginosa-infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide endotoxin prior to P. aeruginosa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent P. aeruginosa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early-life infections in patients with CF.


Subject(s)
Cystic Fibrosis , Haemophilus Infections , Respiratory Tract Infections , Animals , Biofilms , Haemophilus Infections/microbiology , Haemophilus influenzae , Humans , Mice , Pseudomonas aeruginosa , Respiratory System
12.
Pathogens ; 9(9)2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32872494

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a respiratory commensal pathogen that causes a range of infections, particularly in young children and the elderly. Pneumococci undergo spontaneous phase variation in colony opacity phenotype, in which DNA rearrangements within the Type I restriction-modification (R-M) system specificity gene hsdS can potentially generate up to six different hsdS alleles with differential DNA methylation activity, resulting in changes in gene expression. To gain a broader perspective of this system, we performed bioinformatic analyses of Type I R-M loci from 18 published pneumococcal genomes, and one R-M locus sequenced for this study, to compare genetic content, organization, and homology. All 19 loci encoded the genes hsdR, hsdM, hsdS, and at least one hsdS pseudogene, but differed in gene order, gene orientation, and hsdS target recognition domain (TRD) content. We determined the coding sequences of 87 hsdS TRDs and excluded seven from further analysis due to the presence of premature stop codons. Comparative analyses revealed that the TRD 1.1, 1.2, and 2.1 protein sequences had single amino acid substitutions, and TRD 2.2 and 2.3 each had seven differences. The results of this study indicate that variability exists among the gene content and arrangements within Type I R-M loci may provide an additional level of divergence between pneumococcal strains, such that phase variation-mediated control of virulence factors may vary significantly between individual strains. These findings are consistent with presently available transcript profile data.

13.
ERJ Open Res ; 6(3)2020 Jul.
Article in English | MEDLINE | ID: mdl-32802827

ABSTRACT

RATIONALE: Non-typeable Haemophilus influenzae (NTHi) is a common inhabitant of the human nasopharynx and upper airways that can cause opportunistic infections of the airway mucosa including bronchopulmonary infections in patients with chronic obstructive pulmonary disease (COPD). It is clear that opportunistic infections contribute significantly to inflammatory exacerbations of COPD; however, there remains much to be learned regarding specific host and microbial determinants of persistence and/or clearance in this context. METHODS: In this study, we used a recently described ferret model for COPD, in which animals undergo chronic long-term exposure to cigarette smoke, to define host-pathogen interactions during COPD-related NTHi infections. RESULTS: NTHi bacteria colonised the lungs of smoke-exposed animals to a greater extent than controls, and elicited acute host inflammation and neutrophilic influx and activation, along with a significant increase in airway resistance and a decrease in inspiratory capacity consistent with inflammatory exacerbation; notably, these findings were not observed in air-exposed control animals. NTHi bacteria persisted within multicellular biofilm communities within the airway lumen, as evidenced by immunofluorescent detection of bacterial aggregates encased within a sialylated matrix as is typical of NTHi biofilms and differential bacterial gene expression consistent with the biofilm mode of growth. CONCLUSIONS: Based on these results, we conclude that acute infection with NTHi initiates inflammatory exacerbation of COPD disease. The data also support the widely held hypothesis that NTHi bacteria persist within multicellular biofilm communities in the lungs of patients with COPD.

14.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31932329

ABSTRACT

Stenotrophomonas maltophilia is a Gram-negative bacterium found ubiquitously in the environment that has historically been regarded as nonpathogenic. S. maltophilia is increasingly observed in patient sputa in cystic fibrosis (CF), and while existing epidemiology indicates that patients with S. maltophilia have poorer diagnoses, its clinical significance remains unclear. Moreover, as multidrug resistance is common among S. maltophilia isolates, treatment options for these infections may be limited. Here, we investigated the pathogenicity of S. maltophilia alone and during polymicrobial infection with Pseudomonas aeruginosa Colonization, persistence, and virulence of S. maltophilia were assessed in experimental respiratory infections of mice. The results of this study indicate that S. maltophilia transiently colonizes the lung accompanied by significant weight loss and immune cell infiltration and the expression of early inflammatory markers, including interleukin 6 (IL-6), IL-1α, and tumor necrosis factor alpha (TNF-α). Importantly, polymicrobial infection with P. aeruginosa elicited significantly higher S. maltophilia counts in bronchoalveolar lavages and lung tissue homogenates. This increase in bacterial load was directly correlated with the density of the P. aeruginosa population and required viable P. aeruginosa bacteria. Microscopic analysis of biofilms formed in vitro revealed that S. maltophilia formed well-integrated biofilms with P. aeruginosa, and these organisms colocalize in the lung during dual-species infection. Based on these results, we conclude that active cellular processes by P. aeruginosa afford a significant benefit to S. maltophilia during polymicrobial infections. Furthermore, these results indicate that S. maltophilia may have clinical significance in respiratory infections.


Subject(s)
Coinfection/microbiology , Gram-Negative Bacterial Infections/microbiology , Microbial Interactions , Pneumonia, Bacterial/microbiology , Pseudomonas aeruginosa/growth & development , Stenotrophomonas maltophilia/growth & development , Animals , Bacterial Load , Body Weight , Bronchoalveolar Lavage Fluid/microbiology , Coinfection/pathology , Disease Models, Animal , Gram-Negative Bacterial Infections/pathology , Immunity, Innate , Lung/microbiology , Lung/pathology , Mice , Pneumonia, Bacterial/pathology
15.
J Infect Dis ; 220(9): 1399-1405, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31369673

ABSTRACT

Bacterial vaginosis (BV) is the most common cause of vaginal discharge. It is associated with an increased risk of preterm delivery, pelvic inflammatory disease, and an increased risk of acquisition of sexually transmitted infections including human immunodeficiency virus (HIV). The epidemiology of BV supports sexual transmission. However, its etiology remains unknown. At the center of the debate is whether BV is caused by a primary pathogen or a polymicrobial consortium of microorganisms that are sexually transmitted. We previously published a conceptual model hypothesizing that BV is initiated by sexual transmission of Gardnerella vaginalis. Critics of this model have iterated that G. vaginalis is found in virginal women and in sexually active women with a normal vaginal microbiota. In addition, colonization does not always lead to BV. However, recent advances in BV pathogenesis research have determined the existence of 13 different species within the genus Gardnerella. It may be that healthy women are colonized by nonpathogenic Gardnerella species, whereas virulent strains are involved in BV development. Based on our results from a recent prospective study, in addition to an extensive literature review, we present an updated conceptual model for the pathogenesis of BV that centers on the roles of virulent strains of G. vaginalis, as well as Prevotella bivia and Atopobium vaginae.


Subject(s)
Actinobacteria/growth & development , Gardnerella vaginalis/growth & development , Prevotella/growth & development , Vagina/microbiology , Vaginosis, Bacterial/physiopathology , Actinobacteria/pathogenicity , Female , Gardnerella vaginalis/pathogenicity , Humans , Models, Biological , Prevotella/pathogenicity , Virulence
16.
R Soc Open Sci ; 5(11): 180810, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30564392

ABSTRACT

Otitis media (OM) is a common polymicrobial infection of the middle ear in children under the age of 15 years. A widely used experimental strategy to analyse roles of specific phenotypes of bacterial pathogens of OM is to study changes in co-infection kinetics of bacterial populations in animal models when a wild-type bacterial strain is replaced by a specific isogenic mutant strain in the co-inoculating mixtures. As relationships between the OM bacterial pathogens within the host are regulated by many interlinked processes, connecting the changes in the co-infection kinetics to a bacterial phenotype can be challenging. We investigated middle ear co-infections in adult chinchillas (Chinchilla lanigera) by two major OM pathogens: non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat), as well as isogenic mutant strains in each bacterial species. We analysed the infection kinetic data using Lotka-Volterra population dynamics, maximum entropy inference and Akaike information criteria-(AIC)-based model selection. We found that changes in relationships between the bacterial pathogens that were not anticipated in the design of the co-infection experiments involving mutant strains are common and were strong regulators of the co-infecting bacterial populations. The framework developed here allows for a systematic analysis of host-host variations of bacterial populations and small sizes of animal cohorts in co-infection experiments to quantify the role of specific mutant strains in changing the infection kinetics. Our combined approach can be used to analyse the functional footprint of mutant strains in regulating co-infection kinetics in models of experimental OM and other polymicrobial diseases.

17.
Pathog Dis ; 76(7)2018 10 01.
Article in English | MEDLINE | ID: mdl-30265307

ABSTRACT

Mucoid bacteria, predominately Pseudomonas aeruginosa, are commonly associated with decline in pulmonary function in children with cystic fibrosis (CF), and are thought to persist at least in part due to a greater propensity toward forming biofilms. We isolated a higher frequency of mucoid Streptococcus pneumoniae (Sp) expressing high levels of capsular polysaccharides from sputa from children with CF, compared to those without CF. We compared biofilm formation and maturation by mucoid and non-mucoid isolates of Sp collected from children with and without CF. Non-mucoid Sp serotype 19A and 19F isolates had significantly higher levels of biofilm initiation and adherence to CF epithelial cells than did serotype 3 isolates. However, strains expressing high levels of capsule had significantly greater biofilm maturation, as evidenced by increased density and thickness in static and continuous flow assays via confocal microscopy. Finally, using a serotype 3 Sp strain, we showed that highly encapsulated mucoid phase variants predominate during late adherence and better colonize CFTR-/- as compared to wild-type mice in respiratory infection studies. These findings indicate that overexpression of capsule can enhance the development of mature pneumococcal biofilms in vitro, and may contribute to pneumococcal colonization in CF lung disease.


Subject(s)
Biofilms/growth & development , Cystic Fibrosis/complications , Pneumococcal Infections/microbiology , Polysaccharides, Bacterial/metabolism , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/physiology , Animals , Bacterial Adhesion , Cells, Cultured , Disease Models, Animal , Epithelial Cells/microbiology , Humans , Mice , Serogroup , Sputum/microbiology , Streptococcus pneumoniae/classification
18.
Infect Immun ; 86(12)2018 12.
Article in English | MEDLINE | ID: mdl-30249749

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is an extremely common human pathobiont that persists on the airway mucosal surface within biofilm communities, and our previous work has shown that NTHi biofilm maturation is coordinated by the production and uptake of autoinducer 2 (AI-2) quorum signals. To directly test roles for AI-2 in maturation and maintenance of NTHi biofilms, we generated an NTHi 86-028NP mutant in which luxS transcription was under the control of the xylA promoter (NTHi 86-028NP luxS xylA::luxS), rendering AI-2 production inducible by xylose. Comparison of biofilms under inducing and noninducing conditions revealed a biofilm defect in the absence of xylose, whereas biofilm maturation increased following xylose induction. The removal of xylose resulted in the interruption of luxS expression and biofilm dispersal. Measurement of luxS transcript levels by real-time reverse transcription-PCR (RT-PCR) showed that luxS expression peaked as biofilms matured and waned before dispersal. Transcript profiling revealed significant changes following the induction of luxS, including increased transcript levels for a predicted family 8 glycosyltransferase (NTHI1750; designated gstA); this result was confirmed by real-time RT-PCR. An isogenic NTHi 86-028NP gstA mutant had a biofilm defect, including decreased levels of sialylated matrix and significantly altered biofilm structure. In experimental chinchilla infections, we observed a significant decrease in the number of bacteria in the biofilm population (but not in effusions) for NTHi 86-028NP gstA compared to the parental strain. Therefore, we conclude that AI-2 promotes NTHi biofilm maturation and the maintenance of biofilm integrity, due at least in part to the expression of a probable glycosyltransferase that is potentially involved in the synthesis of the biofilm matrix.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Carrier Proteins/metabolism , Glycosyltransferases/metabolism , Haemophilus influenzae/metabolism , Homoserine/analogs & derivatives , Lactones/metabolism , Animals , Bacterial Proteins/genetics , Carbon-Sulfur Lyases/genetics , Carrier Proteins/genetics , Chinchilla/microbiology , Gene Expression Profiling , Glycosyltransferases/genetics , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Homoserine/genetics , Homoserine/metabolism , Intracellular Signaling Peptides and Proteins , Mutation , Otitis Media/microbiology , Real-Time Polymerase Chain Reaction , Transcription, Genetic , Xylose/metabolism
20.
Front Immunol ; 8: 1610, 2017.
Article in English | MEDLINE | ID: mdl-29230212

ABSTRACT

Streptococcus pneumoniae (Spn) causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN) was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.

SELECTION OF CITATIONS
SEARCH DETAIL
...