Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Clin Microbiol Infect Dis ; 42(11): 1373-1381, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37721704

ABSTRACT

Hypervirulent ribotypes (HVRTs) of Clostridioides difficile such as ribotype (RT) 027 are epidemiologically important. This study evaluated whether MALDI-TOF can distinguish between strains of HVRTs and non-HVRTs commonly found in Europe. Obtained spectra of clinical C. difficile isolates (training set, 157 isolates) covering epidemiologically relevant HVRTs and non-HVRTs found in Europe were used as an input for different machine learning (ML) models. Another 83 isolates were used as a validation set. Direct comparison of MALDI-TOF spectra obtained from HVRTs and non-HVRTs did not allow to discriminate between these two groups, while using these spectra with certain ML models could differentiate HVRTs from non-HVRTs with an accuracy >95% and allowed for a sub-clustering of three HVRT subgroups (RT027/RT176, RT023, RT045/078/126/127). MALDI-TOF combined with ML represents a reliable tool for rapid identification of major European HVRTs.

2.
J Clin Microbiol ; 61(10): e0056923, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37768103

ABSTRACT

Blood culture diagnostics require rapid and accurate identification (ID) of pathogens and antimicrobial susceptibility testing (AST). Standard procedures, involving conventional cultivation on agar plates, may take up to 48 hours or more until AST completion. Recent approaches aim to shorten the processing time of positive blood cultures (PBC). The FAST System is a new technology, capable of purifying and concentrating bacterial/fungal pathogens from positive blood culture media and producing a bacterial suspension called "liquid colony" (LC), which can be further used in downstream analyses (e.g., ID and AST). Here, we evaluated the performance of the FAST System LC generated from PBC in comparison to our routine workflow including ID by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using Sepsityper, AST by automatized MicroScan WalkAway plus and directly inoculated disk diffusion (DD), and MICRONAUT-AM for yeast/fungi. A total of 261 samples were analyzed, of which 86.6% (226/261) were eligible for the comparative ID and AST analyses. In comparison to the reference technique (culture-grown colonies), ID concordance of the FAST System LC and Sepsityper was 150/154 (97.4%) and 123/154 (79.9%), respectively, for Gram positive; 67/70 (95.7%) and 64/70 (91.4%), respectively, for Gram negative. For AST, categorical agreement (CA) of the FAST System LC in comparison to the routine workflow for Gram-positive bacteria was 96.1% and 98.7% for MicroScan and DD, respectively. Similar results were obtained for Gram-negative bacteria with 96.6% and 97.5% of CA for MicroScan and DD, respectively. Taken together, the FAST System LC allowed the laboratory to significantly reduce the time to obtain correct ID and AST (automated MicroScan) results 1 day earlier and represents a promising tool to expedite the processing of PBC.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Humans , Anti-Bacterial Agents/pharmacology , Blood Culture/methods , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Bacteria , Gram-Negative Bacteria , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteremia/diagnosis , Bacteremia/microbiology
3.
J Glob Antimicrob Resist ; 34: 234-239, 2023 09.
Article in English | MEDLINE | ID: mdl-37516354

ABSTRACT

OBJECTIVES: In contrast to increasing reports of the emergence of linezolid-resistant enterococci (LRE) emanating from many countries in Europe, Asia, and North America, data on its status and dissemination from the African continent remain scarce, with the information available limited to countries in North Africa. This study investigated the carriage of LRE and the genetic mechanism of resistance among Enterococcus faecium and Enterococcus faecalis strains recovered from humans and animals in Makurdi, Nigeria. METHODS: We conducted a cross-sectional study between June 2020 and July 2021 during which 630 non-duplicate human and animal faecal samples were collected and processed for the recovery of LRE. The genetic mechanisms for resistance were investigated using polymerase chain reaction (PCR) and Sanger sequencing. RESULTS: Linezolid-resistant enterococci were recovered from 5.87% (37/630; 95% CI: 4.17-8.00) of the samples, with the prevalence in animals and humans being 6.22% [(28/450); 95% CI: 4.17-8.87] and 5.00% [(9/180); 95% CI: 2.31-9.28], respectively. All isolates remained susceptible to vancomycin. No known point mutation mediating linezolid resistance was detected in the 23S rRNA and ribosomal protein genes; however, acquisition of one or more potentially transferable genes (cfr, optrA, and poxtA) was observed in 26 of the 37 LRE isolates. Co-existence of all three transferable genes in a single isolate was found in four E. faecium strains of animal origin. CONCLUSION: This study provides baseline evidence for the emergence and active circulation of LRE driven majorly by the acquisition of the optrA gene in Nigeria. To the best of our knowledge, our study is the first to report a co-carriage of all three transferable linezolid resistance determinants in E. faecium. Active LRE surveillance is urgently required to understand the extent of LRE spread across sub-Saharan Africa and to develop tailored mitigation strategies.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Animals , Humans , Linezolid/pharmacology , Anti-Bacterial Agents/pharmacology , Nigeria/epidemiology , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Enterococcus
4.
Parasit Vectors ; 16(1): 20, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658630

ABSTRACT

BACKGROUND: Schistosomiasis is a major neglected tropical disease that affects up to 250 million individuals worldwide. The diagnosis of human schistosomiasis is mainly based on the microscopic detection of the parasite's eggs in the feces (i.e., for Schistosoma mansoni or Schistosoma japonicum) or urine (i.e., for Schistosoma haematobium) samples. However, these techniques have limited sensitivity, and microscopic expertise is waning outside endemic areas. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become the gold standard diagnostic method for the identification of bacteria and fungi in many microbiological laboratories. Preliminary studies have recently shown promising results for parasite identification using this method. The aims of this study were to develop and validate a species-specific database for adult Schistosoma identification, and to evaluate the effects of different storage solutions (ethanol and RNAlater) on spectra profiles. METHODS: Adult worms (males and females) of S. mansoni and S. japonicum were obtained from experimentally infected mice. Species identification was carried out morphologically and by cytochrome oxidase 1 gene sequencing. Reference protein spectra for the creation of an in-house MALDI-TOF MS database were generated, and the database evaluated using new samples. We employed unsupervised (principal component analysis) and supervised (support vector machine, k-nearest neighbor, Random Forest, and partial least squares discriminant analysis) machine learning algorithms for the identification and differentiation of the Schistosoma species. RESULTS: All the spectra were correctly identified by internal validation. For external validation, 58 new Schistosoma samples were analyzed, of which 100% (58/58) were correctly identified to genus level (log score values ≥ 1.7) and 81% (47/58) were reliably identified to species level (log score values ≥ 2). The spectra profiles showed some differences depending on the storage solution used. All the machine learning algorithms classified the samples correctly. CONCLUSIONS: MALDI-TOF MS can reliably distinguish adult S. mansoni from S. japonicum.


Subject(s)
Fungi , Schistosoma japonicum , Female , Adult , Humans , Animals , Mice , Fungi/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria , Lasers
5.
Diagnostics (Basel) ; 12(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36553043

ABSTRACT

Helminth infections caused by nematodes, trematodes, and cestodes are major neglected tropical diseases and of great medical and veterinary relevance. At present, diagnosis of helminthic diseases is mainly based on microscopic observation of different parasite stages, but microscopy is associated with limited diagnostic accuracy. Against this background, recent studies described matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as a potential, innovative tool for helminth identification and differentiation. MALDI-TOF mass spectrometry is based on the analysis of spectra profiles generated from protein extracts of a given pathogen. It requires an available spectra database containing reference spectra, also called main spectra profiles (MSPs), which are generated from well characterized specimens. At present, however, there are no commercially available databases for helminth identification using this approach. In this narrative review, we summarize recent developments and published studies between January 2019 and September 2022 that report on the use of MALDI-TOF mass spectrometry for helminths. Current challenges and future research needs are identified and briefly discussed.

6.
Microorganisms ; 9(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34683327

ABSTRACT

Taenia saginata is a helminth that can cause taeniasis in humans and cysticercosis in cattle. A species-specific diagnosis and differentiation from related species (e.g., Taenia solium) is crucial for individual patient management and disease control programs. Diagnostic stool microscopy is limited by low sensitivity and does not allow discrimination between T. saginata and T. solium. Molecular diagnostic approaches are not routinely available outside research laboratories. Recently, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) was proposed as a potentially suitable technique for species-specific helminth diagnosis. However, standardized protocols and commercial databases for parasite identification are currently unavailable, and pre-analytical factors have not yet been assessed. The purpose of this study was to employ MALDI-TOF MS for the identification of T. saginata proglottids obtained from a human patient, and to assess the effects of different sample storage media on the technique's diagnostic accuracy. We generated T. saginata-specific main spectral profiles and added them to an in-house database for MALDI-TOF MS-based diagnosis of different helminths. Based on protein spectra, T. saginata proglottids could be successfully differentiated from other helminths, as well as bacteria and fungi. Additionally, we analyzed T. saginata proglottids stored in (i) LC-MS grade water; (ii) 0.45% sodium chloride; (iii) 70% ethanol; and (iv) 37% formalin after 2, 4, 6, 8, 12, and 24 weeks of storage. MALDI-TOF MS correctly identified 97.2-99.7% of samples stored in water, sodium chloride, and ethanol, with log-score values ≥2.5, thus indicating reliable species identification. In contrast, no protein spectra were obtained for samples stored in formalin. We conclude that MALDI-TOF-MS can be successfully employed for the identification of T. saginata, and that water, sodium chloride, and ethanol are equally effective storage solutions for prolonged periods of at least 24 weeks.

7.
Microorganisms ; 9(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396299

ABSTRACT

Fascioliasis is a neglected trematode infection caused by Fasciola gigantica and Fasciola hepatica. Routine diagnosis of fascioliasis relies on macroscopic identification of adult worms in liver tissue of slaughtered animals, and microscopic detection of eggs in fecal samples of animals and humans. However, the diagnostic accuracy of morphological techniques and stool microscopy is low. Molecular diagnostics (e.g., polymerase chain reaction (PCR)) are more reliable, but these techniques are not routinely available in clinical microbiology laboratories. Matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a widely-used technique for identification of bacteria and fungi; yet, standardized protocols and databases for parasite detection need to be developed. The purpose of this study was to develop and validate an in-house database for Fasciola species-specific identification. To achieve this goal, the posterior parts of seven adult F. gigantica and one adult F. hepatica were processed and subjected to MALDI-TOF MS to create main spectra profiles (MSPs). Repeatability and reproducibility tests were performed to develop the database. A principal component analysis revealed significant differences between the spectra of F. gigantica and F. hepatica. Subsequently, 78 Fasciola samples were analyzed by MALDI-TOF MS using the previously developed database, out of which 98.7% (n = 74) and 100% (n = 3) were correctly identified as F. gigantica and F. hepatica, respectively. Log score values ranged between 1.73 and 2.23, thus indicating a reliable identification. We conclude that MALDI-TOF MS can provide species-specific identification of medically relevant liver flukes.

SELECTION OF CITATIONS
SEARCH DETAIL
...